-
1
-
-
0027475212
-
A pathway for disulfide bond formation in vivo
-
DOI 10.1073/pnas.90.3.1038
-
Bardwell JC, Lee JO, Jander G, Martin N, Belin D, and Beckwith J. A pathway for disulfide bond formation in vivo. Proc Natl Acad Sci U S A 90: 1038-1042, 1993. (Pubitemid 23053946)
-
(1993)
Proceedings of the National Academy of Sciences of the United States of America
, vol.90
, Issue.3
, pp. 1038-1042
-
-
Bardwell, J.C.A.1
Lee, J.-O.2
Jander, G.3
Martin, N.4
Belin, D.5
Beckwith, J.6
-
2
-
-
0026091179
-
Identification of a protein required for disulfide bond formation in vivo
-
Bardwell JC, McGovern K, and Beckwith J. Identification of a protein required for disulfide bond formation in vivo. Cell 67: 581-589, 1991. (Pubitemid 121001472)
-
(1991)
Cell
, vol.67
, Issue.3
, pp. 581-589
-
-
Bardwell, J.C.A.1
McGovern, K.2
Beckwith, J.3
-
3
-
-
15744375548
-
The nonconsecutive disulfide bond of Escherichia coli phytase (AppA) renders it dependent on the protein-disulfide isomerase, DsbC
-
DOI 10.1074/jbc.M411774200
-
Berkmen M, Boyd D, and Beckwith J. The nonconsecutive disulfide bond of Escherichia coli phytase (AppA) renders it dependent on the protein-disulfide isomerase, DsbC. J Biol Chem 280: 11387-11394, 2005. (Pubitemid 40418447)
-
(2005)
Journal of Biological Chemistry
, vol.280
, Issue.12
, pp. 11387-11394
-
-
Berkmen, M.1
Boyd, D.2
Beckwith, J.3
-
4
-
-
0033583239
-
In vivo and in vitro function of the Escherichia coli periplasmic cysteine oxidoreductase DsbG
-
Bessette PH, Cotto JJ, Gilbert HF, and Georgiou G. In vivo and in vitro function of the Escherichia coli periplasmic cysteine oxidoreductase DsbG. J Biol Chem 274: 7784-7792, 1999.
-
(1999)
J Biol Chem
, vol.274
, pp. 7784-7792
-
-
Bessette, P.H.1
Cotto, J.J.2
Gilbert, H.F.3
Georgiou, G.4
-
5
-
-
44549088533
-
The methionine sulfoxide reductases: Catalysis and substrate specificities
-
Boschi-Muller S, Gand A, and Branlant G. The methionine sulfoxide reductases: catalysis and substrate specificities. Arch Biochem Biophys 474: 266-273, 2008.
-
(2008)
Arch Biochem Biophys
, vol.474
, pp. 266-273
-
-
Boschi-Muller, S.1
Gand, A.2
Branlant, G.3
-
6
-
-
33845945906
-
The thioredoxin domain of Neisseria gonorrhoeae PilB can use electrons from DsbD to reduce downstream methionine sulfoxide reductases
-
DOI 10.1074/jbc.M604971200
-
Brot N, Collet JF, Johnson LC, Jonsson TJ, Weissbach H, and Lowther WT. The thioredoxin domain of Neisseria gonorrhoeae PilB can use electrons from DsbD to reduce downstream methionine sulfoxide reductases. J Biol Chem 281: 32668-32675, 2006. (Pubitemid 46036822)
-
(2006)
Journal of Biological Chemistry
, vol.281
, Issue.43
, pp. 32668-32675
-
-
Brot, N.1
Collet, J.-F.2
Johnson, L.C.3
Jonsson, T.J.4
Weissbach, H.5
Lowther, W.T.6
-
7
-
-
66449134191
-
Two snapshots of electron transport across the membrane: Insights into the structure and function of DsbD
-
Cho SH and Beckwith J. Two snapshots of electron transport across the membrane: insights into the structure and function of DsbD. J Biol Chem 284: 11416-11424, 2009.
-
(2009)
J Biol Chem
, vol.284
, pp. 11416-11424
-
-
Cho, S.H.1
Beckwith, J.2
-
8
-
-
84860534459
-
A new family of membrane electron transporters and its substrates, including a new cell envelope peroxiredoxin, reveal a broadened reductive capacity of the oxidative bacterial cell envelope
-
pii
-
Cho SH, Parsonage D, Thurston C, Dutton RJ, Poole LB, Collet JF, and Beckwith J. A new family of membrane electron transporters and its substrates, including a new cell envelope peroxiredoxin, reveal a broadened reductive capacity of the oxidative bacterial cell envelope. MBio 3: pii, 2012.
-
(2012)
MBio
, vol.3
-
-
Cho, S.H.1
Parsonage, D.2
Thurston, C.3
Dutton, R.J.4
Poole, L.B.5
Collet, J.F.6
Beckwith, J.7
-
9
-
-
34547764270
-
Redox-active cysteines of a membrane electron transporter DsbD show dual compartment accessibility
-
DOI 10.1038/sj.emboj.7601799, PII 7601799
-
Cho SH, Porat A, Ye J, and Beckwith J. Redox-active cysteines of a membrane electron transporter DsbD show dual compartment accessibility. EMBO J 26: 3509-3520, 2007. (Pubitemid 47236882)
-
(2007)
EMBO Journal
, vol.26
, Issue.15
, pp. 3509-3520
-
-
Cho, S.-H.1
Porat, A.2
Ye, J.3
Beckwith, J.4
-
10
-
-
0034011364
-
Transfer of electrons across the cytoplasmic membrane by DsbD, a membrane protein involved in thiol-disulphide exchange and protein folding in the bacterial periplasm
-
DOI 10.1046/j.1365-2958.2000.01778.x
-
Chung J, Chen T, and Missiakas D. Transfer of electrons across the cytoplasmic membrane by DsbD, a membrane protein involved in thiol-disulphide exchange and protein folding in the bacterial periplasm. Mol Microbiol 35: 1099-1109, 2000. (Pubitemid 30137779)
-
(2000)
Molecular Microbiology
, vol.35
, Issue.5
, pp. 1099-1109
-
-
Chung, J.1
Chen, T.2
Missiakas, D.3
-
11
-
-
0037178798
-
Reconstitution of a disulfide isomerization system
-
DOI 10.1074/jbc.M203028200
-
Collet JF, Riemer J, Bader MW, and Bardwell JC. Reconstitution of a disulfide isomerization system. J Biol Chem 277: 26886-26892, 2002. (Pubitemid 34951697)
-
(2002)
Journal of Biological Chemistry
, vol.277
, Issue.30
, pp. 26886-26892
-
-
Collet, J.-F.1
Riemer, J.2
Bader, M.W.3
Bardwell, J.C.A.4
-
12
-
-
77956515945
-
The protein-disulfide isomerase DsbC cooperates with SurA and DsbA in the assembly of the essential beta-barrel protein LptD
-
Denoncin K, Vertommen D, Paek E, and Collet JF. The protein-disulfide isomerase DsbC cooperates with SurA and DsbA in the assembly of the essential beta-barrel protein LptD. J Biol Chem 285: 29425-29433, 2010.
-
(2010)
J Biol Chem
, vol.285
, pp. 29425-29433
-
-
Denoncin, K.1
Vertommen, D.2
Paek, E.3
Collet, J.F.4
-
13
-
-
70450160847
-
A periplasmic reducing system protects single cysteine residues from oxidation
-
Depuydt M, Leonard SE, Vertommen D, Denoncin K, Morsomme P, Wahni K, Messens J, Carroll KS, and Collet JF. A periplasmic reducing system protects single cysteine residues from oxidation. Science 326: 1109-1111, 2009.
-
(2009)
Science
, vol.326
, pp. 1109-1111
-
-
Depuydt, M.1
Leonard, S.E.2
Vertommen, D.3
Denoncin, K.4
Morsomme, P.5
Wahni, K.6
Messens, J.7
Carroll, K.S.8
Collet, J.F.9
-
15
-
-
0033982955
-
Novel Rhodobacter capsulatus genes required for the biogenesis of various c-type cytochromes
-
DOI 10.1046/j.1365-2958.2000.01683.x
-
Deshmukh M, Brasseur G, and Daldal F. Novel Rhodobacter capsulatus genes required for the biogenesis of various c-type cytochromes. Mol Microbiol 35: 123-138, 2000. (Pubitemid 30032276)
-
(2000)
Molecular Microbiology
, vol.35
, Issue.1
, pp. 123-138
-
-
Deshmukh, M.1
Brasseur, G.2
Daldal, F.3
-
16
-
-
0031919407
-
The active-site cysteines of the periplasmic thioredoxin-like protein CcmG of Escherichia coli are important but not essential for cytochrome c maturation in vivo
-
Fabianek RA, Hennecke H, and Thony-Meyer L. The activesite cysteines of the periplasmic thioredoxin-like protein CcmG of Escherichia coli are important but not essential for cytochrome c maturation in vivo. J Bacteriol 180: 1947-1950, 1998. (Pubitemid 28173079)
-
(1998)
Journal of Bacteriology
, vol.180
, Issue.7
, pp. 1947-1950
-
-
Fabianek, R.A.1
Hennecke, H.2
Thony-Meyer, L.3
-
17
-
-
79959338971
-
A comparison of thiol peroxidase mechanisms
-
Flohe L, Toppo S, Cozza G, and Ursini F. A comparison of thiol peroxidase mechanisms. Antioxid Redox Signal 15: 763-780, 2011.
-
(2011)
Antioxid Redox Signal
, vol.15
, pp. 763-780
-
-
Flohe, L.1
Toppo, S.2
Cozza, G.3
Ursini, F.4
-
18
-
-
67349185408
-
Ion channels versus ion pumps: The principal difference, in principle
-
Gadsby DC. Ion channels versus ion pumps: the principal difference, in principle. Nature Reviews Mol Cell Biol 10: 344-352, 2009.
-
(2009)
Nature Reviews Mol Cell Biol
, vol.10
, pp. 344-352
-
-
Gadsby, D.C.1
-
19
-
-
0037018912
-
Thiol-disulfide exchange in an immunoglobulin-like fold: Structure of the N-terminal domain of DsbD
-
DOI 10.1021/bi016038l
-
Goulding CW, Sawaya MR, Parseghian A, Lim V, Eisenberg D, and Missiakas D. Thiol-disulfide exchange in an immunoglobulin-like fold: structure of the N-terminal domain of DsbD. Biochemistry 41: 6920-6927, 2002. (Pubitemid 34575663)
-
(2002)
Biochemistry
, vol.41
, Issue.22
, pp. 6920-6927
-
-
Goulding, C.W.1
Sawaya, M.R.2
Parseghian, A.3
Lim, V.4
Eisenberg, D.5
Missiakas, D.6
-
20
-
-
0028971218
-
Evidence that the pathway of disulfide bond formation in Escherichia coli involves interactions between the cysteines of DsbB and DsbA
-
Guilhot C, Jander G, Martin NL, and Beckwith J. Evidence that the pathway of disulfide bond formation in Escherichia coli involves interactions between the cysteines of DsbB and DsbA. Proc Natl Acad Sci U S A 92: 9895-9899, 1995.
-
(1995)
Proc Natl Acad Sci U S A
, vol.92
, pp. 9895-9899
-
-
Guilhot, C.1
Jander, G.2
Martin, N.L.3
Beckwith, J.4
-
21
-
-
0030857512
-
A Salmonella typhimurium genetic locus which confers copper tolerance on copper-sensitive mutants of Escherichia coli
-
Gupta SD, Wu HC, and Rick PD. A Salmonella typhimurium genetic locus which confers copper tolerance on copper-sensitive mutants of Escherichia coli. J Bacteriol 179: 4977-4984, 1997. (Pubitemid 27340528)
-
(1997)
Journal of Bacteriology
, vol.179
, Issue.16
, pp. 4977-4984
-
-
Gupta, S.D.1
Wu, H.C.2
Rick, P.D.3
-
22
-
-
0037119945
-
The disulfide bond isomerase DsbC is activated by an immunoglobulin-fold thiol oxidoreductase: Crystal structure of the DsbC-DsbDalpha complex
-
Haebel PW, Goldstone D, Katzen F, Beckwith J, and Metcalf P. The disulfide bond isomerase DsbC is activated by an immunoglobulin-fold thiol oxidoreductase: crystal structure of the DsbC-DsbDalpha complex. EMBO J 21: 4774-4784, 2002.
-
(2002)
EMBO J
, vol.21
, pp. 4774-4784
-
-
Haebel, P.W.1
Goldstone, D.2
Katzen, F.3
Beckwith, J.4
Metcalf, P.5
-
23
-
-
1842477219
-
Vivo Substrate Specificity of Periplasmic Disulfide Oxidoreductases
-
DOI 10.1074/jbc.M311391200
-
Hiniker A and Bardwell JCA. In vivo substrate specificity of periplasmic disulfide oxidoreductases. J Biol Chem 279: 12967-12973, 2004. (Pubitemid 38445872)
-
(2004)
Journal of Biological Chemistry
, vol.279
, Issue.13
, pp. 12967-12973
-
-
Hiniker, A.1
Bardwell, J.C.A.2
-
24
-
-
49549119981
-
The disulfide bond formation (Dsb) system
-
Ito K and Inaba K. The disulfide bond formation (Dsb) system. Curr Opin Struct Biol 18: 450-458, 2008.
-
(2008)
Curr Opin Struct Biol
, vol.18
, pp. 450-458
-
-
Ito, K.1
Inaba, K.2
-
25
-
-
0030787850
-
In vitro and in vivo redox states of the Escherichia coli periplasmic oxidoreductases DsbA and DsbC
-
DOI 10.1021/bi9707739
-
Joly JC and Swartz Jr. In vitro and in vivo redox states of the Escherichia coli periplasmic oxidoreductases DsbA and DsbC. Biochemistry 36: 10067-10072, 1997. (Pubitemid 27357714)
-
(1997)
Biochemistry
, vol.36
, Issue.33
, pp. 10067-10072
-
-
Joly, J.C.1
Swartz, J.R.2
-
26
-
-
70149110001
-
Detecting folding intermediates of a protein as it passes through the bacterial translocation channel
-
Kadokura H and Beckwith J. Detecting folding intermediates of a protein as it passes through the bacterial translocation channel. Cell 138: 1164-1173, 2009.
-
(2009)
Cell
, vol.138
, pp. 1164-1173
-
-
Kadokura, H.1
Beckwith, J.2
-
27
-
-
77956318615
-
Mechanisms of oxidative protein folding in the bacterial cell envelope
-
Kadokura H and Beckwith J. Mechanisms of oxidative protein folding in the bacterial cell envelope. Antioxid Redox Signal 13: 1231-1246, 2010.
-
(2010)
Antioxid Redox Signal
, vol.13
, pp. 1231-1246
-
-
Kadokura, H.1
Beckwith, J.2
-
28
-
-
0034703766
-
Transmembrane electron transfer by the membrane protein DsbD occurs via a disulfide bond cascade
-
Katzen F and Beckwith J. Transmembrane electron transfer by the membrane protein DsbD occurs via a disulfide bond cascade. Cell 103: 769-779, 2000.
-
(2000)
Cell
, vol.103
, pp. 769-779
-
-
Katzen, F.1
Beckwith, J.2
-
29
-
-
0042838288
-
Role and location of the unusual redox-active cysteines in the hydrophobic domain of the transmembrane electron transporter DsbD
-
DOI 10.1073/pnas.1334136100
-
Katzen F and Beckwith J. Role and location of the unusual redox-active cysteines in the hydrophobic domain of the transmembrane electron transporter DsbD. Proc Natl Acad Sci U S A 100: 10471-10476, 2003. (Pubitemid 37071902)
-
(2003)
Proceedings of the National Academy of Sciences of the United States of America
, vol.100
, Issue.18
, pp. 10471-10476
-
-
Katzen, F.1
Beckwith, J.2
-
30
-
-
0036682611
-
Evolutionary domain fusion expanded the substrate specificity of the transmembrane electron transporter DsbD
-
DOI 10.1093/emboj/cdf405
-
Katzen F, Deshmukh M, Daldal F, and Beckwith J. Evolutionary domain fusion expanded the substrate specificity of the transmembrane electron transporter DsbD. EMBO J 21: 3960-3969, 2002. (Pubitemid 34857429)
-
(2002)
EMBO Journal
, vol.21
, Issue.15
, pp. 3960-3969
-
-
Katzen, F.1
Deshmukh, M.2
Daldal, F.3
Beckwith, J.4
-
31
-
-
0037716929
-
Crystal structure of DsbDγ reveals the mechanism of redox potential shift and substrate specificity
-
DOI 10.1016/S0014-5793(03)00434-4
-
Kim JH, Kim SJ, Jeong DG, Son JH, and Ryu SE. Crystal structure of DsbDgamma reveals the mechanism of redox potential shift and substrate specificity(1). FEBS Lett 543: 164-169, 2003. (Pubitemid 36577248)
-
(2003)
FEBS Letters
, vol.543
, Issue.1-3
, pp. 164-169
-
-
Kim, J.H.1
Kim, S.J.2
Jeong, D.G.3
Son, J.H.4
Ryu, S.E.5
-
32
-
-
0041737777
-
Reversing transmembrane electron flow: The DsbD and DsbB protein families
-
DOI 10.1159/000070263
-
Kimball RA, Martin L, and Saier MH, Jr. Reversing transmembrane electron flow: the DsbD and DsbB protein families. J Mol Microbiol Biotechnol 5: 133-149, 2003. (Pubitemid 37475742)
-
(2003)
Journal of Molecular Microbiology and Biotechnology
, vol.5
, Issue.3
, pp. 133-149
-
-
Kimball, R.A.1
Martin, L.2
Saier Jr., M.H.3
-
33
-
-
79952441869
-
Characterization of DsbD in Neisseria meningitidis
-
Kumar P, Sannigrahi S, Scoullar J, Kahler CM, and Tzeng YL. Characterization of DsbD in Neisseria meningitidis. Mol Microbiol 79: 1557-1573, 2011.
-
(2011)
Mol Microbiol
, vol.79
, pp. 1557-1573
-
-
Kumar, P.1
Sannigrahi, S.2
Scoullar, J.3
Kahler, C.M.4
Tzeng, Y.L.5
-
34
-
-
79955767087
-
Crystal structure of the outer membrane protein RcsF, a new substrate for the periplasmic protein-disulfide isomerase DsbC
-
Leverrier P, Declercq JP, Denoncin K, Vertommen D, Hiniker A, Cho SH, and Collet JF. Crystal structure of the outer membrane protein RcsF, a new substrate for the periplasmic protein-disulfide isomerase DsbC. J Biol Chem 286: 16734-16742, 2011.
-
(2011)
J Biol Chem
, vol.286
, pp. 16734-16742
-
-
Leverrier, P.1
Declercq, J.P.2
Denoncin, K.3
Vertommen, D.4
Hiniker, A.5
Cho, S.H.6
Collet, J.F.7
-
35
-
-
6344260684
-
Peptidoglycan amidase MepA is a LAS metallopeptidase
-
DOI 10.1074/jbc.M406735200
-
Marcyjaniak M, Odintsov SG, Sabala I, and Bochtler M. Peptidoglycan amidase MepA is a LAS metallopeptidase. J Biol Chem 279: 43982-43989, 2004. (Pubitemid 39390706)
-
(2004)
Journal of Biological Chemistry
, vol.279
, Issue.42
, pp. 43982-43989
-
-
Marcyjaniak, M.1
Odintsov, S.G.2
Sabala, I.3
Bochtler, M.4
-
36
-
-
79960126159
-
Oxidation statedependent protein-protein interactions in disulfide cascades
-
Mavridou DA, Saridakis E, Kritsiligkou P, Goddard AD, Stevens JM, Ferguson SJ, and Redfield C. Oxidation statedependent protein-protein interactions in disulfide cascades. J Biol Chem 286: 24943-24956, 2011.
-
(2011)
J Biol Chem
, vol.286
, pp. 24943-24956
-
-
Mavridou, D.A.1
Saridakis, E.2
Kritsiligkou, P.3
Goddard, A.D.4
Stevens, J.M.5
Ferguson, S.J.6
Redfield, C.7
-
37
-
-
34249936136
-
Active-site Properties of the Oxidized and Reduced C-terminal Domain of DsbD Obtained by NMR Spectroscopy
-
DOI 10.1016/j.jmb.2007.04.038, PII S0022283607005153
-
Mavridou DA, Stevens JM, Ferguson SJ, and Redfield C. Active-site properties of the oxidized and reduced Cterminal domain of DsbD obtained by NMR spectroscopy. J Mol Biol 370: 643-658, 2007. (Pubitemid 46879768)
-
(2007)
Journal of Molecular Biology
, vol.370
, Issue.4
, pp. 643-658
-
-
Mavridou, D.A.I.1
Stevens, J.M.2
Ferguson, S.J.3
Redfield, C.4
-
38
-
-
59149095130
-
Control of periplasmic interdomain thiol:disulfide exchange in the transmembrane oxidoreductase DsbD
-
Mavridou DA, Stevens JM, Goddard AD, Willis AC, Ferguson SJ, and Redfield C. Control of periplasmic interdomain thiol:disulfide exchange in the transmembrane oxidoreductase DsbD. J Biol Chem 284: 3219-3226, 2009.
-
(2009)
J Biol Chem
, vol.284
, pp. 3219-3226
-
-
Mavridou, D.A.1
Stevens, J.M.2
Goddard, A.D.3
Willis, A.C.4
Ferguson, S.J.5
Redfield, C.6
-
39
-
-
0034048647
-
Crystal structure of the protein disulfide bond isomerase, DsbC, from Escherichia coli
-
DOI 10.1038/73295
-
McCarthy AA, Haebel PW, Torronen A, Rybin V, Baker EN, and Metcalf P. Crystal structure of the protein disulfide bond isomerase, DsbC, from Escherichia coli. Nat Struct Biol 7: 196-199, 2000. (Pubitemid 30140763)
-
(2000)
Nature Structural Biology
, vol.7
, Issue.3
, pp. 196-199
-
-
McCarthy, A.A.1
Haebel, P.W.2
Torronen, A.3
Rybin, V.4
Baker, E.N.5
Metcalf, P.6
-
40
-
-
35748965031
-
The oxidase DsbA folds a protein with a nonconsecutive disulfide
-
DOI 10.1074/jbc.M705236200
-
Messens J, Collet JF, Van Belle K, Brosens E, Loris R, and Wyns L. The oxidase DsbA folds a protein with a nonconsecutive disulfide. J Biol Chem 282: 31302-31307, 2007. (Pubitemid 350044853)
-
(2007)
Journal of Biological Chemistry
, vol.282
, Issue.43
, pp. 31302-31307
-
-
Messens, J.1
Collet, J.-F.2
Van Belle, K.3
Brosens, E.4
Loris, R.5
Wyns, L.6
-
41
-
-
0028296940
-
The Escherichia coli dsbC (xprA) gene encodes a periplasmic protein involved in disulfide bond formation
-
Missiakas D, Georgopoulos C, and Raina S. The Escherichia coli dsbC (xprA) gene encodes a periplasmic protein involved in disulfide bond formation. EMBO J 13: 2013-2020, 1994. (Pubitemid 24124535)
-
(1994)
EMBO Journal
, vol.13
, Issue.8
, pp. 2013-2020
-
-
Missiakas, D.1
Georgopoulos, C.2
Raina, S.3
-
42
-
-
0028979629
-
Identification and characterization of a new disulfide isomerase-like protein (DsbD) in Escherichia coli
-
Missiakas D, Schwager F, and Raina S. Identification and characterization of a new disulfide isomerase-like protein (DsbD) in Escherichia coli. EMBO J 14: 3415-3424, 1995.
-
(1995)
EMBO J
, vol.14
, pp. 3415-3424
-
-
Missiakas, D.1
Schwager, F.2
Raina, S.3
-
43
-
-
0034609808
-
Structural determinants of water permeation through aquaporin-1
-
Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann JB, Engel A, and Fujiyoshi Y. Structural determinants of water permeation through aquaporin-1. Nature 407: 599-605, 2000.
-
(2000)
Nature
, vol.407
, pp. 599-605
-
-
Murata, K.1
Mitsuoka, K.2
Hirai, T.3
Walz, T.4
Agre, P.5
Heymann, J.B.6
Engel, A.7
Fujiyoshi, Y.8
-
44
-
-
0030749493
-
3-type cytochrome biogenesis; evidence for a reductase role in vivo
-
Page MD and Ferguson SJ. Paracoccus denitrificans CcmG is a periplasmic protein-disulphide oxidoreductase required for c-and aa3-type cytochrome biogenesis; evidence for a reductase role in vivo. Mol Microbiol 24: 977-990, 1997. (Pubitemid 27286150)
-
(1997)
Molecular Microbiology
, vol.24
, Issue.5
, pp. 977-990
-
-
Page, M.D.1
Ferguson, S.J.2
-
45
-
-
3542993223
-
6f complex in Arabidopsis chloroplasts
-
DOI 10.1074/jbc.M404285200
-
Page ML, Hamel PP, Gabilly ST, Zegzouti H, Perea JV, Alonso JM, Ecker JR, Theg SM, Christensen SK, and Merchant S. A homolog of prokaryotic thiol disulfide transporter CcdA is required for the assembly of the cytochrome b6f complex in Arabidopsis chloroplasts. J Biol Chem 279: 32474-32482, 2004. (Pubitemid 39014702)
-
(2004)
Journal of Biological Chemistry
, vol.279
, Issue.31
, pp. 32474-32482
-
-
Page, M.L.D.1
Hamel, P.P.2
Gabilly, S.T.3
Zegzouti, H.4
Perea, J.V.5
Alonso, J.H.6
Ecker, J.R.7
Theg, S.M.8
Christensen, S.K.9
Merchant, S.10
-
46
-
-
4444221565
-
UCSF Chimera - A visualization system for exploratory research and analysis
-
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, and Ferrin TE. UCSF Chimera - a visualization system for exploratory research and analysis. J Comput Chem 25: 1605-1612, 2004.
-
(2004)
J Comput Chem
, vol.25
, pp. 1605-1612
-
-
Pettersen, E.F.1
Goddard, T.D.2
Huang, C.C.3
Couch, G.S.4
Greenblatt, D.M.5
Meng, E.C.6
Ferrin, T.E.7
-
48
-
-
4544258776
-
The unusual transmembrane electron transporter DsbD and its homologues: A bacterial family of disulfide reductases
-
DOI 10.1016/j.resmic.2004.05.005, PII S0923250804001305
-
Porat A, Cho SH, and Beckwith J. The unusual transmembrane electron transporter DsbD and its homologues: a bacterial family of disulfide reductases. Res Microbiol 155: 617-622, 2004. (Pubitemid 39222120)
-
(2004)
Research in Microbiology
, vol.155
, Issue.8
, pp. 617-622
-
-
Porat, A.1
Cho, S.-H.2
Beckwith, J.3
-
49
-
-
57549095616
-
Expanding the functional diversity of proteins through cysteine oxidation
-
Reddie KG and Carroll KS. Expanding the functional diversity of proteins through cysteine oxidation. Curr Opin Chem Biol 12: 746-754, 2008.
-
(2008)
Curr Opin Chem Biol
, vol.12
, pp. 746-754
-
-
Reddie, K.G.1
Carroll, K.S.2
-
50
-
-
79957530554
-
Engineered pathways for correct disulfide bond oxidation
-
Ren G and Bardwell JC. Engineered pathways for correct disulfide bond oxidation. Antioxid Redox Signal 14: 2399-2412, 2011.
-
(2011)
Antioxid Redox Signal
, vol.14
, pp. 2399-2412
-
-
Ren, G.1
Bardwell, J.C.2
-
51
-
-
0029822654
-
An in vivo pathway for disulfide bond isomerization in Escherichia coli
-
DOI 10.1073/pnas.93.23.13048
-
Rietsch A, Belin D, Martin N, and Beckwith J. An in vivo pathway for disulfide bond isomerization in Escherichia coli. Proc Natl Acad Sci U S A 93: 13048-13053, 1996. (Pubitemid 26382767)
-
(1996)
Proceedings of the National Academy of Sciences of the United States of America
, vol.93
, Issue.23
, pp. 13048-13053
-
-
Rietsch, A.1
Belin, D.2
Martin, N.3
Beckwith, J.4
-
52
-
-
0030668672
-
Reduction of the periplasmic disulfide bond isomerase, DsbC, occurs by passage of electrons from cytoplasmic thioredoxin
-
Rietsch A, Bessette P, Georgiou G, and Beckwith J. Reduction of the periplasmic disulfide bond isomerase, DsbC, occurs by passage of electrons from cytoplasmic thioredoxin. J Bacteriol 179: 6602-8, 1997. (Pubitemid 27465291)
-
(1997)
Journal of Bacteriology
, vol.179
, Issue.21
, pp. 6602-6608
-
-
Rietsch, A.1
Bessette, P.2
Georgiou, G.3
Beckwith, J.4
-
53
-
-
79959340042
-
Protein sulfenic acid formation: From cellular damage to redox regulation
-
Roos G and Messens J. Protein sulfenic acid formation: from cellular damage to redox regulation. Free Radic Biol Med 51: 314-326, 2011.
-
(2011)
Free Radic Biol Med
, vol.51
, pp. 314-326
-
-
Roos, G.1
Messens, J.2
-
54
-
-
33847710733
-
Kinetics of the Intramolecular Disulfide Exchange Between the Periplasmic Domains of DsbD
-
DOI 10.1016/j.jmb.2006.12.033, PII S0022283606017086
-
Rozhkova A and Glockshuber R. Kinetics of the intramolecular disulfide exchange between the periplasmic domains of DsbD. J Mol Biol 367: 1162-1170, 2007. (Pubitemid 46386065)
-
(2007)
Journal of Molecular Biology
, vol.367
, Issue.4
, pp. 1162-1170
-
-
Rozhkova, A.1
Glockshuber, R.2
-
55
-
-
45849134503
-
Thermodynamic aspects of DsbD-mediated electron transport
-
Rozhkova A and Glockshuber R. Thermodynamic aspects of DsbD-mediated electron transport. J Mol Biol 380: 783-788, 2008.
-
(2008)
J Mol Biol
, vol.380
, pp. 783-788
-
-
Rozhkova, A.1
Glockshuber, R.2
-
56
-
-
2442607486
-
Structural basis and kinetics of inter- and intramolecular disulfide exchange in the redox catalyst DsbD
-
DOI 10.1038/sj.emboj.7600178
-
Rozhkova A, Stirnimann CU, Frei P, Grauschopf U, Brunisholz R, Grutter MG, Capitani G, and Glockshuber R. Structural basis and kinetics of inter-and intramolecular disulfide exchange in the redox catalyst DsbD. EMBO J 23: 1709-1719, 2004. (Pubitemid 38649634)
-
(2004)
EMBO Journal
, vol.23
, Issue.8
, pp. 1709-1719
-
-
Rozhkova, A.1
Stirnimann, C.U.2
Frei, P.3
Grauschopf, U.4
Brunisholz, R.5
Grutter, M.G.6
Capitani, G.7
Glockshuber, R.8
-
57
-
-
77955274527
-
Cytochrome c biogenesis: The Ccm system
-
Sanders C, Turkarslan S, Lee DW, and Daldal F. Cytochrome c biogenesis: the Ccm system. Trends Microbiol 18: 266-274, 2010.
-
(2010)
Trends Microbiol
, vol.18
, pp. 266-274
-
-
Sanders, C.1
Turkarslan, S.2
Lee, D.W.3
Daldal, F.4
-
58
-
-
0035209075
-
Alkyl hydroperoxide reductase is the primary scavenger of endogenous hydrogen peroxide in Escherichia coli
-
DOI 10.1128/JB.183.24.7173-7181.2001
-
Seaver LC and Imlay JA. Alkyl hydroperoxide reductase is the primary scavenger of endogenous hydrogen peroxide in Escherichia coli. J Bacteriol 183: 7173-7181, 2001. (Pubitemid 33121851)
-
(2001)
Journal of Bacteriology
, vol.183
, Issue.24
, pp. 7173-7181
-
-
Seaver, L.C.1
Imlay, J.A.2
-
59
-
-
0028215226
-
Characterization of DsbC, a periplasmic protein of Erwinia chrysanthemi and Escherichia coli with disulfide isomerase activity
-
Shevchik VE, Condemine G, and Robert-Baudouy J. Characterization of DsbC, a periplasmic protein of Erwinia chrysanthemi and Escherichia coli with disulfide isomerase activity. EMBO J 13: 2007-2012, 1994. (Pubitemid 24124534)
-
(1994)
EMBO Journal
, vol.13
, Issue.8
, pp. 2007-2012
-
-
Shevchik, V.E.1
Condemine, G.2
Robert-Baudouy, J.3
-
60
-
-
72949101778
-
In vivo oxidative protein folding can be facilitated by oxidation-reduction cycling
-
Shouldice SR, Cho SH, Boyd D, Heras B, Eser M, Beckwith J, Riggs P, Martin JL, and Berkmen M. In vivo oxidative protein folding can be facilitated by oxidation-reduction cycling. Mol Microbiol 75: 13-28, 2010.
-
(2010)
Mol Microbiol
, vol.75
, pp. 13-28
-
-
Shouldice, S.R.1
Cho, S.H.2
Boyd, D.3
Heras, B.4
Eser, M.5
Beckwith, J.6
Riggs, P.7
Martin, J.L.8
Berkmen, M.9
-
61
-
-
0037162478
-
The outer membrane localization of the Neisseria gonorrhoeae MsrA/B is involved in survival against reactive oxygen species
-
DOI 10.1073/pnas.152334799
-
Skaar EP, Tobiason DM, Quick J, Judd RC, Weissbach H, Etienne F, Brot N, and Seifert HS. The outer membrane localization of the Neisseria gonorrhoeae MsrA/B is involved in survival against reactive oxygen species. Proc Natl Acad Sci U S A 99: 10108-10113, 2002. (Pubitemid 34831180)
-
(2002)
Proceedings of the National Academy of Sciences of the United States of America
, vol.99
, Issue.15
, pp. 10108-10113
-
-
Skaar, E.P.1
Tobiason, D.M.2
Quick, J.3
Juddt, R.C.4
Weissbach, H.5
Etienne, F.6
Brot, N.7
Seifert, H.S.8
-
62
-
-
0033230589
-
Six conserved cysteines of the membrane protein DsbD are required for the transfer of electrons from the cytoplasm to the periplasm of Escherichia coli
-
DOI 10.1093/emboj/18.21.5963
-
Stewart EJ, Katzen F, and Beckwith J. Six conserved cysteines of the membrane protein DsbD are required for the transfer of electrons from the cytoplasm to the periplasm of Escherichia coli. EMBO J 18: 5963-5971, 1999. (Pubitemid 29515673)
-
(1999)
EMBO Journal
, vol.18
, Issue.21
, pp. 5963-5971
-
-
Stewart, E.J.1
Katzen, F.2
Beckwith, J.3
-
63
-
-
21744448514
-
Structural basis and kinetics of DsbD-dependent cytochrome c maturation
-
DOI 10.1016/j.str.2005.04.014, PII S0969212605001796
-
Stirnimann CU, Rozhkova A, Grauschopf U, Grutter MG, Glockshuber R, and Capitani G. Structural basis and kinetics of DsbD-dependent cytochrome c maturation. Structure 13: 985-993, 2005. (Pubitemid 40943330)
-
(2005)
Structure
, vol.13
, Issue.7
, pp. 985-993
-
-
Stirnimann, C.U.1
Rozhkova, A.2
Grauschopf, U.3
Grutter, M.G.4
Glockshuber, R.5
Capitani, G.6
-
64
-
-
0347192985
-
X-ray structure of a protein-conducting channel
-
DOI 10.1038/nature02218
-
Van den Berg B, Clemons WM, Jr., Collinson I, Modis Y, Hartmann E, Harrison SC, and Rapoport TA. X-ray structure of a protein-conducting channel. Nature 427: 36-44, 2004. (Pubitemid 38094813)
-
(2004)
Nature
, vol.427
, Issue.6969
, pp. 36-44
-
-
Van Den Berg, B.1
Clemons Jr., W.M.2
Collinson, I.3
Modis, Y.4
Hartmann, E.5
Harrison, S.C.6
Rapoport, T.A.7
-
65
-
-
37349049610
-
The disulphide isomerase DsbC cooperates with the oxidase DsbA in a DsbD-independent manner
-
DOI 10.1111/j.1365-2958.2007.06030.x
-
Vertommen D, Depuydt M, Pan J, Leverrier P, Knoops L, Szikora JP, Messens J, Bardwell JC, and Collet JF. The disulphide isomerase DsbC cooperates with the oxidase DsbA in a DsbD-independent manner. Mol Microbiol 67: 336-349, 2008. (Pubitemid 350295830)
-
(2008)
Molecular Microbiology
, vol.67
, Issue.2
, pp. 336-349
-
-
Vertommen, D.1
Depuydt, M.2
Pan, J.3
Leverrier, P.4
Knoops, L.5
Szikora, J.-P.6
Messens, J.7
Bardwell, J.C.A.8
Collet, J.-F.9
-
66
-
-
71549143840
-
Disulfides as redox switches: From molecular mechanisms to functional significance
-
Wouters MA, Fan SW, and Haworth NL. Disulfides as redox switches: from molecular mechanisms to functional significance. Antioxid Redox Signal 12: 53-91, 2010.
-
(2010)
Antioxid Redox Signal
, vol.12
, pp. 53-91
-
-
Wouters, M.A.1
Fan, S.W.2
Haworth, N.L.3
-
67
-
-
0028949156
-
Structural and functional characterization of DsbC, a protein involved in disulfide bond formation in Escherichia coli
-
Zapun A, Missiakas D, Raina S, and Creighton TE. Structural and functional characterization of DsbC, a protein involved in disulfide bond formation in Escherichia coli. Biochemistry 34: 5075-5089, 1995.
-
(1995)
Biochemistry
, vol.34
, pp. 5075-5089
-
-
Zapun, A.1
Missiakas, D.2
Raina, S.3
Creighton, T.E.4
-
68
-
-
54049111011
-
Structure of a complex of the ATPase SecA and the protein-translocation channel
-
Zimmer J, Nam Y, and Rapoport TA. Structure of a complex of the ATPase SecA and the protein-translocation channel. Nature 455: 936-943, 2008.
-
(2008)
Nature
, vol.455
, pp. 936-943
-
-
Zimmer, J.1
Nam, Y.2
Rapoport, T.A.3
|