메뉴 건너뛰기




Volumn 79, Issue 7, 2013, Pages 2172-2181

Anaerobic sulfur metabolism coupled to dissimilatory iron reduction in the extremophile Acidithiobacillus ferrooxidans

Author keywords

[No Author keywords available]

Indexed keywords

ACIDITHIOBACILLUS FERROOXIDANS; AEROBIC AND ANAEROBIC CONDITIONS; AEROBIC CONDITION; ANAEROBIC CONDITIONS; DISSIMILATORY IRON REDUCTION; ELECTRON ACCEPTOR; GENE TRANSCRIPTIONS; RESPIRATORY CHAINS;

EID: 84875547325     PISSN: 00992240     EISSN: 10985336     Source Type: Journal    
DOI: 10.1128/AEM.03057-12     Document Type: Article
Times cited : (132)

References (61)
  • 1
    • 52949105398 scopus 로고    scopus 로고
    • Carbon, iron and sulfur metabolism in acidophilic micro-organisms
    • Johnson DB, Hallberg KB. 2009. Carbon, iron and sulfur metabolism in acidophilic micro-organisms. Adv. Microb. Physiol. 54:201-255.
    • (2009) Adv. Microb. Physiol. , vol.54 , pp. 201-255
    • Johnson, D.B.1    Hallberg, K.B.2
  • 2
    • 34547406840 scopus 로고    scopus 로고
    • Assimilatory and dissimilatory processes of microorganisms affecting metals in the environment
    • Liermann LJ, Hausrath EM, Anbar AD, Brantley SL. 2007. Assimilatory and dissimilatory processes of microorganisms affecting metals in the environment. J. Anal. Atom. Spectrom. 22:867-877.
    • (2007) J. Anal. Atom. Spectrom. , vol.22 , pp. 867-877
    • Liermann, L.J.1    Hausrath, E.M.2    Anbar, A.D.3    Brantley, S.L.4
  • 3
    • 79959886819 scopus 로고    scopus 로고
    • Bioenergetic challenges of microbial iron metabolisms
    • Bird LJ, Bonnefoy V, Newman DK. 2011. Bioenergetic challenges of microbial iron metabolisms. Trends Microbiol. 19:330-340.
    • (2011) Trends Microbiol. , vol.19 , pp. 330-340
    • Bird, L.J.1    Bonnefoy, V.2    Newman, D.K.3
  • 4
    • 34250639301 scopus 로고    scopus 로고
    • Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes
    • Shi L, Squier TC, Zachara JM, Fredrickson JK. 2007. Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes. Mol. Microbiol. 65:12-20.
    • (2007) Mol. Microbiol. , vol.65 , pp. 12-20
    • Shi, L.1    Squier, T.C.2    Zachara, J.M.3    Fredrickson, J.K.4
  • 6
    • 35348910775 scopus 로고    scopus 로고
    • Shewanella putrefaciens produces an Fe(III)-solubilizing organic ligand during anaerobic respiration on insoluble Fe(III) oxides
    • Taillefert M, Beckler JS, Carey E, Burns JL, Fennessey CM, DiChristina TJ. 2007. Shewanella putrefaciens produces an Fe(III)-solubilizing organic ligand during anaerobic respiration on insoluble Fe(III) oxides. J. Inorg. Biochem. 101:1760-1767.
    • (2007) J. Inorg. Biochem. , vol.101 , pp. 1760-1767
    • Taillefert, M.1    Beckler, J.S.2    Carey, E.3    Burns, J.L.4    Fennessey, C.M.5    DiChristina, T.J.6
  • 7
    • 84868361590 scopus 로고    scopus 로고
    • Redox transformations of iron at extremely low pH: fundamental and applied aspects
    • doi:10.3389/fmicb.2012.00096
    • Johnson DB, Kanao T, Hedrich S. 2012. Redox transformations of iron at extremely low pH: fundamental and applied aspects. Front. Microbiol. 3:96. doi:10.3389/fmicb.2012.00096.
    • (2012) Front. Microbiol. , vol.3 , pp. 96
    • Johnson, D.B.1    Kanao, T.2    Hedrich, S.3
  • 9
    • 0034288365 scopus 로고    scopus 로고
    • The effect of solution speciation on iron-sulphur-arsenic-chloride systems at 298 K
    • Welham NJ, Malatt KA, Vukcevic S. 2000. The effect of solution speciation on iron-sulphur-arsenic-chloride systems at 298 K. Hydrometallurgy 57:209-223.
    • (2000) Hydrometallurgy , vol.57 , pp. 209-223
    • Welham, N.J.1    Malatt, K.A.2    Vukcevic, S.3
  • 10
    • 0034531942 scopus 로고    scopus 로고
    • Iron metabolism in anoxic environments at near neutral pH
    • Straub KL, Benz M, Schink B. 2001. Iron metabolism in anoxic environments at near neutral pH. FEMS Microbiol. Ecol. 34:181-186.
    • (2001) FEMS Microbiol. Ecol. , vol.34 , pp. 181-186
    • Straub, K.L.1    Benz, M.2    Schink, B.3
  • 12
    • 0036202033 scopus 로고    scopus 로고
    • 3+, S0, and H2 in the chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans
    • 3+, S0, and H2 in the chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans. J. Bacteriol. 184:2081-2087.
    • (2002) J. Bacteriol. , vol.184 , pp. 2081-2087
    • Ohmura, N.1    Sasaki, K.2    Matsumoto, N.3    Saiki, H.4
  • 14
    • 0025899288 scopus 로고
    • Energy transduction by anaerobic ferric iron respiration in Thiobacillus ferrooxidans
    • Pronk JT, Liem K, Bos P, Keunen JG. 1991. Energy transduction by anaerobic ferric iron respiration in Thiobacillus ferrooxidans. Appl. Environ. Microbiol. 57:2063-2068.
    • (1991) Appl. Environ. Microbiol. , vol.57 , pp. 2063-2068
    • Pronk, J.T.1    Liem, K.2    Bos, P.3    Keunen, J.G.4
  • 16
    • 0029885477 scopus 로고    scopus 로고
    • Purification and characterization of the hydrogenase from Thiobacillus ferrooxidans
    • Fischer J, Quentmeier A, Kostka S, Kraft R, Friedrich CG. 1996. Purification and characterization of the hydrogenase from Thiobacillus ferrooxidans. Arch. Microbiol. 165:289-296.
    • (1996) Arch. Microbiol. , vol.165 , pp. 289-296
    • Fischer, J.1    Quentmeier, A.2    Kostka, S.3    Kraft, R.4    Friedrich, C.G.5
  • 18
    • 0034253241 scopus 로고    scopus 로고
    • Purification and some properties of sulfur reductase from the iron-oxidizing bacterium Thiobacillus ferrooxidans NASF-1
    • Ng KY, Sawada R, Inoue S, Kamimura K, Sugio T. 2000. Purification and some properties of sulfur reductase from the iron-oxidizing bacterium Thiobacillus ferrooxidans NASF-1. J. Biosci. Bioeng. 90:199-203.
    • (2000) J. Biosci. Bioeng. , vol.90 , pp. 199-203
    • Ng, K.Y.1    Sawada, R.2    Inoue, S.3    Kamimura, K.4    Sugio, T.5
  • 20
    • 70350445731 scopus 로고    scopus 로고
    • Extending the models for iron and sulfur oxidation in the extreme acidophile Acidithiobacillus ferrooxidans
    • doi:10 .1186/1471-2164-10-394
    • Quatrini R, Appia-Ayme C, Denis Y, Jedlicki E, Holmes D, Bonnefoy V. 2009. Extending the models for iron and sulfur oxidation in the extreme acidophile Acidithiobacillus ferrooxidans. BMC Genomics 10:394. doi:10 .1186/1471-2164-10-394.
    • (2009) BMC Genomics , vol.10 , pp. 394
    • Quatrini, R.1    Appia-Ayme, C.2    Denis, Y.3    Jedlicki, E.4    Holmes, D.5    Bonnefoy, V.6
  • 21
    • 84920081702 scopus 로고    scopus 로고
    • Genetic and bioinformatic insights into iron and sulfur oxidation mechanisms of bioleaching organisms
    • Berlin, Germany
    • Holmes DS, Bonnefoy V. 2007. Genetic and bioinformatic insights into iron and sulfur oxidation mechanisms of bioleaching organisms, p 281-307. In Rawlings DE, Johnson DB (ed), Biomining. Springer-Verlag, Berlin, Germany.
    • (2007) In Rawlings DE, Johnson DB (ed), Biomining. Springer-Verlag , pp. 281-307
    • Holmes, D.S.1    Bonnefoy, V.2
  • 22
    • 34547434227 scopus 로고    scopus 로고
    • Oxidation of inorganic sulfur compounds in acidophilic prokaryotes
    • Rohwerder T, Sand W. 2007. Oxidation of inorganic sulfur compounds in acidophilic prokaryotes. Eng. Life Sci. 7:301-309.
    • (2007) Eng. Life Sci. , vol.7 , pp. 301-309
    • Rohwerder, T.1    Sand, W.2
  • 23
    • 84855653203 scopus 로고    scopus 로고
    • Genomic insights into microbial oxidation and iron homeostasis in extremely acidic environments
    • Bonnefoy V, Holmes DS. 2012. Genomic insights into microbial oxidation and iron homeostasis in extremely acidic environments. Environ. Microbiol. 14:1597-1611.
    • (2012) Environ. Microbiol. , vol.14 , pp. 1597-1611
    • Bonnefoy, V.1    Holmes, D.S.2
  • 24
    • 0023147274 scopus 로고
    • 2+ grown Thiobacillus ferrooxidans? FEMS Microbiol
    • 2+ grown Thiobacillus ferrooxidans? FEMS Microbiol. Lett. 41:1-6.
    • (1987) Lett. , vol.41 , pp. 1-6
    • Corbett, C.M.1    Ingledew, W.J.2
  • 25
    • 0021837699 scopus 로고
    • Role of a ferric iron-reducing system in sulfur oxidation by Thiobacillus ferrooxidans
    • Sugio T, Domatsu C, Munukata O, Tano T, Imai K. 1985. Role of a ferric iron-reducing system in sulfur oxidation by Thiobacillus ferrooxidans. Appl. Environ. Microbiol. 49:1401-1406.
    • (1985) Appl. Environ. Microbiol. , vol.49 , pp. 1401-1406
    • Sugio, T.1    Domatsu, C.2    Munukata, O.3    Tano, T.4    Imai, K.5
  • 26
    • 0023449864 scopus 로고
    • Purification and some properties of sulfur-ferric iron oxidoreductase from Thiobacillus ferrooxidans
    • Sugio T, Mizunashi W, Magaki K, Tano T. 1987. Purification and some properties of sulfur-ferric iron oxidoreductase from Thiobacillus ferrooxidans. J. Bacteriol. 169:4916-4922.
    • (1987) J. Bacteriol. , vol.169 , pp. 4916-4922
    • Sugio, T.1    Mizunashi, W.2    Magaki, K.3    Tano, T.4
  • 27
    • 0026723646 scopus 로고
    • Purification and some properties of sulfite-ferric ion oxidoreductase from Thiobacillus ferrooxidans
    • Sugio T, Hirose T, Ye LZ, Tano T. 1992. Purification and some properties of sulfite-ferric ion oxidoreductase from Thiobacillus ferrooxidans. J. Bacteriol. 174:4189-4192.
    • (1992) J. Bacteriol. , vol.174 , pp. 4189-4192
    • Sugio, T.1    Hirose, T.2    Ye, L.Z.3    Tano, T.4
  • 28
    • 67949106617 scopus 로고    scopus 로고
    • Ferrous iron production mediated by tetrathionate hydrolase in tetrathionate-, sulfur-, and iron-grown Acidithiobacillus ferrooxidansATCC23270 cells
    • Sugio T, Taha TM, Takeuchi F. 2009. Ferrous iron production mediated by tetrathionate hydrolase in tetrathionate-, sulfur-, and iron-grown Acidithiobacillus ferrooxidansATCC23270 cells. Biosci. Biotechnol. Biochem. 73:1381-1386.
    • (2009) Biosci. Biotechnol. Biochem. , vol.73 , pp. 1381-1386
    • Sugio, T.1    Taha, T.M.2    Takeuchi, F.3
  • 30
    • 84857911928 scopus 로고    scopus 로고
    • Kinetics of anaerobic elemental sulfur oxidation by ferric iron in Acidithiobacillus ferrooxidans and protein identification by comparative 2-DE-MS/MS
    • Kucera J, Bouchal P, Cerna H, Potesil D, Janiczek O, Zdrahal Z, Mandl M. 2012. Kinetics of anaerobic elemental sulfur oxidation by ferric iron in Acidithiobacillus ferrooxidans and protein identification by comparative 2-DE-MS/MS. Antonie van Leeuwenhoek 101:561-573.
    • (2012) Antonie van Leeuwenhoek , vol.101 , pp. 561-573
    • Kucera, J.1    Bouchal, P.2    Cerna, H.3    Potesil, D.4    Janiczek, O.5    Zdrahal, Z.6    Mandl, M.7
  • 31
    • 79955854560 scopus 로고    scopus 로고
    • Reductive dissolution of ferric iron minerals: a new approach for bioprocessing nickel laterites
    • Hallberg KB, Grail BM, du Plessis C, Johnson DB. 2011. Reductive dissolution of ferric iron minerals: a new approach for bioprocessing nickel laterites. Miner. Eng. 24:620-624.
    • (2011) Miner. Eng. , vol.24 , pp. 620-624
    • Hallberg, K.B.1    Grail, B.M.2    du Plessis, C.3    Johnson, D.B.4
  • 32
    • 84920081524 scopus 로고    scopus 로고
    • Techniques for detecting and identifying acidophilic mineral-oxidizing microorganisms
    • Springer-Verlag, Berlin, Germany
    • Johnson DB, Hallberg KB. 2007. Techniques for detecting and identifying acidophilic mineral-oxidizing microorganisms. In Rawlings DE, Johnson DB (ed), Biomining. Springer-Verlag, Berlin, Germany.
    • (2007) In Rawlings DE, Johnson DB (ed), Biomining
    • Johnson, D.B.1    Hallberg, K.B.2
  • 33
    • 0000816704 scopus 로고
    • Rapid assay for microbially reducible ferric iron in aquatic sediments
    • Lovley DR, Phillips EJ. 1987. Rapid assay for microbially reducible ferric iron in aquatic sediments. Appl. Environ. Microbiol. 53:1536-1540.
    • (1987) Appl. Environ. Microbiol. , vol.53 , pp. 1536-1540
    • Lovley, D.R.1    Phillips, E.J.2
  • 34
    • 83255180709 scopus 로고    scopus 로고
    • Selective removal of transition metals from acidic mine waters by novel consortia of acidophilic sulfidogenic bacteria
    • Ñancucheo I, Johnson DB. 2012. Selective removal of transition metals from acidic mine waters by novel consortia of acidophilic sulfidogenic bacteria. Microb. Biotechnol. 5:34-44.
    • (2012) Microb. Biotechnol. , vol.5 , pp. 34-44
    • Ñancucheo, I.1    Johnson, D.B.2
  • 35
    • 79961131441 scopus 로고    scopus 로고
    • Sulfur metabolism in the extreme acidophile Acidithiobacillus caldus
    • doi:10.3389/fmicb.2011.00017
    • Mangold S, Valdes J, Holmes DS, Dopson M. 2011. Sulfur metabolism in the extreme acidophile Acidithiobacillus caldus. Front. Microbiol. 2:17. doi:10.3389/fmicb.2011.00017.
    • (2011) Front. Microbiol. , vol.2 , pp. 17
    • Mangold, S.1    Valdes, J.2    Holmes, D.S.3    Dopson, M.4
  • 36
    • 0033434080 scopus 로고    scopus 로고
    • Probability-based protein identification by searching sequence databases using mass spectrometry data
    • Perkins DN, Pappin DJ, Creasy DM, Cottrell JS. 1999. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551-3567.
    • (1999) Electrophoresis , vol.20 , pp. 3551-3567
    • Perkins, D.N.1    Pappin, D.J.2    Creasy, D.M.3    Cottrell, J.S.4
  • 39
    • 67651219302 scopus 로고    scopus 로고
    • Selection and evaluation of reference genes for improved interrogation of microbial transcriptomes: case study with the extremophile Acidithiobacillus ferrooxidans
    • doi:10.1186/1471-2199-10-63
    • Nieto PA, Covarrubias PC, Jedlicki E, Holmes DS, Quatrini R. 2009. Selection and evaluation of reference genes for improved interrogation of microbial transcriptomes: case study with the extremophile Acidithiobacillus ferrooxidans. BMC Mol. Biol. 10:63. doi:10.1186/1471-2199-10-63.
    • (2009) BMC Mol. Biol. , vol.10 , pp. 63
    • Nieto, P.A.1    Covarrubias, P.C.2    Jedlicki, E.3    Holmes, D.S.4    Quatrini, R.5
  • 40
    • 34250783088 scopus 로고    scopus 로고
    • Integrative analysis of transcriptomic and proteomic data: challenges, solutions and applications
    • Nie L, Wu G, Culley DE, Scholten JC, Zhang W. 2007. Integrative analysis of transcriptomic and proteomic data: challenges, solutions and applications. Crit. Rev. Biotechnol. 27:63-75.
    • (2007) Crit. Rev. Biotechnol. , vol.27 , pp. 63-75
    • Nie, L.1    Wu, G.2    Culley, D.E.3    Scholten, J.C.4    Zhang, W.5
  • 42
    • 28444475607 scopus 로고    scopus 로고
    • Correlation between mRNA and protein abundance in Desulfovibrio vulgaris: a multiple regression to identify sources of variations
    • Nie L, Wu G, Zhang W. 2006. Correlation between mRNA and protein abundance in Desulfovibrio vulgaris: a multiple regression to identify sources of variations. Biochem. Biophys. Res. Commun. 339:603-610.
    • (2006) Biochem. Biophys. Res. Commun. , vol.339 , pp. 603-610
    • Nie, L.1    Wu, G.2    Zhang, W.3
  • 43
    • 0141920354 scopus 로고    scopus 로고
    • Comparing protein abundance and mRNA expression levels on a genomic scale
    • doi:10.1186/gb-2003-4-9-117
    • Greenbaum D, Colangelo C, Williams K, Gerstein M. 2003. Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biol. 4:117. doi:10.1186/gb-2003-4-9-117.
    • (2003) Genome Biol. , vol.4 , pp. 117
    • Greenbaum, D.1    Colangelo, C.2    Williams, K.3    Gerstein, M.4
  • 44
    • 0037810930 scopus 로고    scopus 로고
    • The sulfane sulfur of persulfides is the actual substrate of the sulfur-oxidizing enzymes from Acidithiobacillus and Acidiphilium spp
    • Rohwerder T, Sand W. 2003. The sulfane sulfur of persulfides is the actual substrate of the sulfur-oxidizing enzymes from Acidithiobacillus and Acidiphilium spp. Microbiology 149:1699-1709.
    • (2003) Microbiology , vol.149 , pp. 1699-1709
    • Rohwerder, T.1    Sand, W.2
  • 45
    • 84866333915 scopus 로고    scopus 로고
    • Acidithiobacillus caldus sulfur oxidation model based on transcriptome analysis between the wild type and sulfur oxygenase reductase defective mutant
    • doi: 10.1371/journal.pone.0039470
    • Chen L, Ren Y, Lin J, Liu X, Pang X. 2012. Acidithiobacillus caldus sulfur oxidation model based on transcriptome analysis between the wild type and sulfur oxygenase reductase defective mutant. PLoS One 7:e39470. doi: 10.1371/journal.pone.0039470.
    • (2012) PLoS One , vol.7
    • Chen, L.1    Ren, Y.2    Lin, J.3    Liu, X.4    Pang, X.5
  • 47
    • 29544452864 scopus 로고    scopus 로고
    • Mechanistic insights into sulfur relay by multiple sulfur mediators involved in thiouridine biosynthesis at tRNA wobble positions
    • Ikeuchi Y, Shigi N, Kato J, Nishimura A, Suzuki T. 2006. Mechanistic insights into sulfur relay by multiple sulfur mediators involved in thiouridine biosynthesis at tRNA wobble positions. Mol. Cell 21:97-108.
    • (2006) Mol. Cell , vol.21 , pp. 97-108
    • Ikeuchi, Y.1    Shigi, N.2    Kato, J.3    Nishimura, A.4    Suzuki, T.5
  • 48
    • 84864008329 scopus 로고    scopus 로고
    • Cytoplasmic sulfurtransferases in the purple sulfur bacterium Allochromatium vinosum: evidence for sulfur transfer from DsrEFH to DsrC
    • doi:10.1371/journal.pone.0040785
    • Stockdreher Y, Venceslau SS, Josten M, Sahl HG, Pereira IA, Dahl C. 2012. Cytoplasmic sulfurtransferases in the purple sulfur bacterium Allochromatium vinosum: evidence for sulfur transfer from DsrEFH to DsrC. PLoS One 7:e40785. doi:10.1371/journal.pone.0040785.
    • (2012) PLoS One , vol.7
    • Stockdreher, Y.1    Venceslau, S.S.2    Josten, M.3    Sahl, H.G.4    Pereira, I.A.5    Dahl, C.6
  • 49
    • 29644442531 scopus 로고    scopus 로고
    • A membrane-bound multienzyme, hydrogen-oxidizing, and sulfur-reducing complex from the hyperthermophilic bacterium Aquifex aeolicus
    • Guiral M, Tron P, Aubert C, Gloter A, Iobbi-Nivol C, Giudici-Orticoni MT. 2005. A membrane-bound multienzyme, hydrogen-oxidizing, and sulfur-reducing complex from the hyperthermophilic bacterium Aquifex aeolicus. J. Biol. Chem. 280:42004-42015.
    • (2005) J. Biol. Chem. , vol.80 , pp. 42004-42015
    • Guiral, M.1    Tron, P.2    Aubert, C.3    Gloter, A.4    Iobbi-Nivol, C.5    Giudici-Orticoni, M.T.6
  • 50
    • 1842689010 scopus 로고    scopus 로고
    • The transformation of inorganic sulfur compounds and the assimilation of organic and inorganic carbon by the sulfur disproportionating bacterium Desulfocapsa sulfoexigens
    • Frederiksen TM, Finster K. 2004. The transformation of inorganic sulfur compounds and the assimilation of organic and inorganic carbon by the sulfur disproportionating bacterium Desulfocapsa sulfoexigens. Antonie van Leeuwenhoek 85:141-149.
    • (2004) Antonie van Leeuwenhoek , vol.85 , pp. 141-149
    • Frederiksen, T.M.1    Finster, K.2
  • 51
    • 9144245023 scopus 로고    scopus 로고
    • Metabolic reconstruction of sulfur assimilation in the extremophile Acidithiobacillus ferrooxidans based on genome analysis
    • doi:10.1186/1471-2164-4-51
    • Valdes J, Veloso F, Jedlicki E, Holmes D. 2003. Metabolic reconstruction of sulfur assimilation in the extremophile Acidithiobacillus ferrooxidans based on genome analysis. BMC Genomics 4:51. doi:10.1186/1471-2164-4-51.
    • (2003) BMC Genomics , vol.4 , pp. 51
    • Valdes, J.1    Veloso, F.2    Jedlicki, E.3    Holmes, D.4
  • 52
    • 0032940452 scopus 로고    scopus 로고
    • Thermodynamic aspects of energy conservation by chemolithotrophic sulfur bacteria in relation to the sulfur oxidation pathways
    • Kelly DP. 1999. Thermodynamic aspects of energy conservation by chemolithotrophic sulfur bacteria in relation to the sulfur oxidation pathways. Arch. Microbiol. 171:219-229.
    • (1999) Arch. Microbiol. , vol.171 , pp. 219-229
    • Kelly, D.P.1
  • 54
    • 0033000388 scopus 로고    scopus 로고
    • Function of proline residues of MotA in torque generation by the flagellar motor of Escherichia coli
    • Braun TF, Poulson S, Gully JB, Empey JC, Van Way S, Putnam A, Blair DF. 1999. Function of proline residues of MotA in torque generation by the flagellar motor of Escherichia coli. J. Bacteriol. 181:3542-3551.
    • (1999) J. Bacteriol. , vol.181 , pp. 3542-3551
    • Braun, T.F.1    Poulson, S.2    Gully, J.B.3    Empey, J.C.4    Van Way, S.5    Putnam, A.6    Blair, D.F.7
  • 55
    • 0031038898 scopus 로고    scopus 로고
    • A C-methyltransferase involved in both ubiquinone and menaquinone biosynthesis: isolation and identification of the Escherichia coli ubiE gene
    • Lee PT, Hsu AY, Ha HT, Clarke CF. 1997. A C-methyltransferase involved in both ubiquinone and menaquinone biosynthesis: isolation and identification of the Escherichia coli ubiE gene. J. Bacteriol. 179:1748-1754.
    • (1997) J. Bacteriol. , vol.179 , pp. 1748-1754
    • Lee, P.T.1    Hsu, A.Y.2    Ha, H.T.3    Clarke, C.F.4
  • 56
    • 72449140008 scopus 로고    scopus 로고
    • Gene organization and CO2-responsive expression of four cbb operons in the biomining bacterium Acidithiobacillus ferrooxidans
    • Esparza M, Bowien B, Jedlicki E, Holmes DS. 2009. Gene organization and CO2-responsive expression of four cbb operons in the biomining bacterium Acidithiobacillus ferrooxidans. Adv. Mater. Res. 71-73:207-210.
    • (2009) Adv. Mater. Res. , vol.71-73 , pp. 207-210
    • Esparza, M.1    Bowien, B.2    Jedlicki, E.3    Holmes, D.S.4
  • 57
    • 77955935025 scopus 로고    scopus 로고
    • Genes and pathways for CO2 fixation in the obligate, chemolithoautotrophic acidophile, Acidithiobacillus ferrooxidans
    • doi:10 .1186/1471-2180-10-229
    • Esparza M, Cardenas JP, Bowien B, Jedlicki E, Holmes DS. 2010. Genes and pathways for CO2 fixation in the obligate, chemolithoautotrophic acidophile, Acidithiobacillus ferrooxidans. BMC Microbiol. 10:229. doi:10 .1186/1471-2180-10-229.
    • (2010) BMC Microbiol. , vol.10 , pp. 229
    • Esparza, M.1    Cardenas, J.P.2    Bowien, B.3    Jedlicki, E.4    Holmes, D.S.5
  • 58
    • 84861196601 scopus 로고    scopus 로고
    • The effect of CO2 availability on the growth, iron oxidation and CO2-fixation rates of pure cultures of Leptospirillum ferriphilum and Acidithiobacillus ferrooxidans
    • Bryan CG, Davis-Belmar CS, van Wyk N, Fraser MK, Dew D, Rautenbach GF, Harrison ST. 2012. The effect of CO2 availability on the growth, iron oxidation and CO2-fixation rates of pure cultures of Leptospirillum ferriphilum and Acidithiobacillus ferrooxidans. Biotechnol. Bioeng. 109: 1693-1703.
    • (2012) Biotechnol. Bioeng. , vol.109 , pp. 1693-1703
    • Bryan, C.G.1    Davis-Belmar, C.S.2    van Wyk, N.3    Fraser, M.K.4    Dew, D.5    Rautenbach, G.F.6    Harrison, S.T.7
  • 59
    • 77954373738 scopus 로고    scopus 로고
    • Going forward laterally: transmembrane passage of hydrophobic molecules through protein channel walls
    • van den Berg B. 2010. Going forward laterally: transmembrane passage of hydrophobic molecules through protein channel walls. Chembiochem 11: 1339-1343.
    • (2010) Chembiochem , vol.11 , pp. 1339-1343
    • van den Berg, B.1
  • 60
    • 4143137531 scopus 로고    scopus 로고
    • Differential protein expression during growth of Acidithiobacillus ferrooxidans on ferrous iron, sulfur compounds, or metal sulfides
    • Ramirez P, Guiliani N, Valenzuela L, Beard S, Jerez CA. 2004. Differential protein expression during growth of Acidithiobacillus ferrooxidans on ferrous iron, sulfur compounds, or metal sulfides. Appl. Environ. Microbiol. 70:4491-4498.
    • (2004) Appl. Environ. Microbiol. , vol.70 , pp. 4491-4498
    • Ramirez, P.1    Guiliani, N.2    Valenzuela, L.3    Beard, S.4    Jerez, C.A.5
  • 61
    • 0029918686 scopus 로고    scopus 로고
    • SurA assists the folding of Escherichia coli outer membrane proteins
    • Lazar SW, Kolter R. 1996. SurA assists the folding of Escherichia coli outer membrane proteins. J. Bacteriol. 178:1770-1773.
    • (1996) J. Bacteriol. , vol.178 , pp. 1770-1773
    • Lazar, S.W.1    Kolter, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.