-
1
-
-
0001160588
-
What size net gives valid generalization?
-
10.1162/neco.1989.1.1.151
-
Baum, E. B.; & Haussler, D. (1989). What size net gives valid generalization? Neural Computation, 1(1), 151-160.
-
(1989)
Neural Computation
, vol.1
, Issue.1
, pp. 151-160
-
-
Baum, E.B.1
Haussler, D.2
-
2
-
-
0024750852
-
Learnability and the Vapnik-Chervonenkis dimension
-
1072253 0697.68079 10.1145/76359.76371
-
Blumer, A.; Ehrenfeucht, A.; Haussler, D.; & Warmuth, M. K. (1989). Learnability and the Vapnik-Chervonenkis dimension. Journal of the ACM, 36(4), 929-965.
-
(1989)
Journal of the ACM
, vol.36
, Issue.4
, pp. 929-965
-
-
Blumer, A.1
Ehrenfeucht, A.2
Haussler, D.3
Warmuth, M.K.4
-
3
-
-
77956522919
-
Bayes optimal multilabel classification via probabilistic classifier chains
-
Haifa, Israel
-
Dembczynski, K.; Cheng, W.; & Hullermeier, E. (2010a). Bayes optimal multilabel classification via probabilistic classifier chains. In Proc. ICML 2010, Haifa, Israel.
-
(2010)
Proc. ICML 2010
-
-
Dembczynski, K.1
Cheng, W.2
Hullermeier, E.3
-
4
-
-
84875461541
-
-
Haifa, Israel
-
Dembczynski, K.; Waegeman, W.; Cheng, W.; & Hüllermeier, E. (2010b). On label dependence in multi-label classification. Working notes of the 2nd international workshop on learning from multi-label data, Haifa, Israel.
-
(2010)
On Label Dependence in Multi-label Classification. Working Notes of the 2nd International Workshop on Learning from Multi-label Data
-
-
Dembczynski, K.1
Waegeman, W.2
Cheng, W.3
Hüllermeier, E.4
-
5
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
2274360 1222.68184
-
Demsar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7, 1-30.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1-30
-
-
Demsar, J.1
-
6
-
-
33846069101
-
The VC dimension of k-fold union
-
2291190 1185.68373 10.1016/j.ipl.2006.10.004
-
Eisenstat, D.; & Angluin, D. (2007). The VC dimension of k-fold union. Information Processing Letters, 101(5), 181-184.
-
(2007)
Information Processing Letters
, vol.101
, Issue.5
, pp. 181-184
-
-
Eisenstat, D.1
Angluin, D.2
-
7
-
-
70350028703
-
K-fold unions of low-dimensional concept classes
-
2571754 1209.68350 10.1016/j.ipl.2009.09.005
-
Eisenstat, D. (2009). k-fold unions of low-dimensional concept classes. Information Processing Letters, 109(23-24), 1232-1234.
-
(2009)
Information Processing Letters
, vol.109
, Issue.23-24
, pp. 1232-1234
-
-
Eisenstat, D.1
-
8
-
-
33745767102
-
Collective multi-label classification
-
Ghamrawi, N.; & McCallum, A. (2005). Collective multi-label classification. In CIKM 2005 (pp. 195-200).
-
(2005)
CIKM 2005
, pp. 195-200
-
-
Ghamrawi, N.1
McCallum, A.2
-
9
-
-
0001553979
-
Toward efficient agnostic learning
-
0938.68797
-
Kearns, M. J.; Schapire, R. E.; & Sellie, L. (1994). Toward efficient agnostic learning. Machine Learning, 17(2-3), 115-141.
-
(1994)
Machine Learning
, vol.17
, Issue.2-3
, pp. 115-141
-
-
Kearns, M.J.1
Schapire, R.E.2
Sellie, L.3
-
10
-
-
0031381525
-
Wrappers for feature subset selection
-
0904.68143 10.1016/S0004-3702(97)00043-X
-
Kohavi, R.; & John, G. H. (1997). Wrappers for feature subset selection. Artificial Intelligence, 97(1-2), 273-324.
-
(1997)
Artificial Intelligence
, vol.97
, Issue.1-2
, pp. 273-324
-
-
Kohavi, R.1
John, G.H.2
-
13
-
-
70349968175
-
Classifier chains for multi-label classification
-
2 10.1007/978-3-642-04174-7-17
-
Read, J.; Pfahringer, B.; Holmes, G.; & Frank, E. (2009). Classifier chains for multi-label classification. In Proceedings of 20th European conference on machine learning and knowledge discovery in databases (Vol. 2, pp. 254-269).
-
(2009)
Proceedings of 20th European Conference on Machine Learning and Knowledge Discovery in Databases
, pp. 254-269
-
-
Read, J.1
Pfahringer, B.2
Holmes, G.3
Frank, E.4
-
14
-
-
38349121661
-
Genetic algorithm-based feature set partitioning for classification problems
-
10.1016/j.patcog.2007.10.013 10.1016/j.patcog.2007.10.013
-
Rokach, L. (2008). Genetic algorithm-based feature set partitioning for classification problems. Pattern Recognition, 41(5), 1693-1717. doi: 10.1016/j.patcog.2007.10.013.
-
(2008)
Pattern Recognition
, vol.41
, Issue.5
, pp. 1693-1717
-
-
Rokach, L.1
-
15
-
-
84879747849
-
-
Series in machine perception and artificial intelligence 75 World Scientific Singapore 1187.68495
-
Rokach, L. (2010). Pattern classification using ensemble methods. Series in machine perception and artificial intelligence: Vol. 75. Singapore: World Scientific.
-
(2010)
Pattern Classification Using Ensemble Methods
-
-
Rokach, L.1
-
17
-
-
0033905095
-
Boostexter: A boosting-based system for text categorization
-
0951.68561 10.1023/A:1007649029923
-
Schapire, R. E.; & Singer, Y. (2000). Boostexter: a boosting-based system for text categorization. Machine Learning, 39(2-3), 135-168.
-
(2000)
Machine Learning
, vol.39
, Issue.2-3
, pp. 135-168
-
-
Schapire, R.E.1
Singer, Y.2
-
18
-
-
80054927779
-
Multi-label classification by analyzing labels dependencies
-
G. Tsoumakas M. L. Zhang Z. H. Zhou (eds) Bled, Slovenia
-
Tenenboim, L.; Rokach, L.; & Shapira, B. (2009). Multi-label classification by analyzing labels dependencies. In G. Tsoumakas, M. L. Zhang, & Z. H. Zhou (Eds.), Proceedings of the 1st international workshop on learning from multi-label data, Bled, Slovenia (pp. 117-132).
-
(2009)
Proceedings of the 1st International Workshop on Learning from Multi-label Data
, pp. 117-132
-
-
Tenenboim, L.1
Rokach, L.2
Shapira, B.3
-
21
-
-
77955908068
-
Correlation-based pruning of stacked binary relevance models for multi-label learning
-
G. Tsoumakas M. L. Zhang Z. H. Zhou (eds) Bled, Slovenia
-
Tsoumakas, G.; Dimou, A.; Spyromitros, E.; Mezaris, V.; Kompatsiaris, I.; & Vlahavas, I. (2009). Correlation-based pruning of stacked binary relevance models for multi-label learning. In G. Tsoumakas, M. L. Zhang, & Z. H. Zhou (Eds.), Proceedings of the 1st international workshop on learning from multi-label data, Bled, Slovenia (pp. 101-116).
-
(2009)
Proceedings of the 1st International Workshop on Learning from Multi-label Data
, pp. 101-116
-
-
Tsoumakas, G.1
Dimou, A.2
Spyromitros, E.3
Mezaris, V.4
Kompatsiaris, I.5
Vlahavas, I.6
-
23
-
-
0001024505
-
On the uniform convergence of relative frequencies of events to their probabilities
-
0247.60005 10.1137/1116025
-
Vapnik, V. N.; & Chervonenkis, A. Y. (1971). On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and Its Applications, 16, 264-279.
-
(1971)
Theory of Probability and Its Applications
, vol.16
, pp. 264-279
-
-
Vapnik, V.N.1
Chervonenkis, A.Y.2
-
25
-
-
0026692226
-
Stacked generalization
-
10.1016/S0893-6080(05)80023-1
-
Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5, 241-259.
-
(1992)
Neural Networks
, vol.5
, pp. 241-259
-
-
Wolpert, D.H.1
-
26
-
-
77958544287
-
Constructing a fast algorithm for multi-label classification with support vector data description
-
Xu, J. (2010). Constructing a fast algorithm for multi-label classification with support vector data description. In IEEE international conference on granular computing (pp. 817-821).
-
(2010)
IEEE International Conference on Granular Computing
, pp. 817-821
-
-
Xu, J.1
-
27
-
-
67650995440
-
Feature selection for multi-label naive Bayes classification
-
1193.68219 10.1016/j.ins.2009.06.010
-
Zhang, M. L.; Peña, J. M.; & Robles, V. (2009). Feature selection for multi-label naive Bayes classification. Information Sciences, 179(19), 3218-3229.
-
(2009)
Information Sciences
, vol.179
, Issue.19
, pp. 3218-3229
-
-
Zhang, M.L.1
Peña, J.M.2
Robles, V.3
-
28
-
-
77956201769
-
Multi-label learning by exploiting label dependency
-
Washington, DC, USA 10.1145/1835804.1835930 http://doi.acm.org/10.1145/ 1835804.1835930
-
Zhang, M.; & Zhang, K. (2010). Multi-label learning by exploiting label dependency. In Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining, Washington, DC, USA (pp. 999-1008). http://doi.acm.org/10.1145/1835804.1835930.
-
(2010)
Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 999-1008
-
-
Zhang, M.1
Zhang, K.2
|