메뉴 건너뛰기




Volumn 91, Issue 1, 2013, Pages 1-42

Exploiting label dependencies for improved sample complexity

Author keywords

Artificial datasets; Conditional and unconditional label dependence; Empirical experiment; Ensemble learning algorithms; Ensemble models diversity; Generalization bounds; Multi label classification; Multi label evaluation measures

Indexed keywords

ARTIFICIAL DATASETS; CONDITIONAL AND UNCONDITIONAL LABEL DEPENDENCE; EMPIRICAL EXPERIMENTS; ENSEMBLE LEARNING ALGORITHM; ENSEMBLE MODELS; EVALUATION MEASURES; GENERALIZATION BOUND; MULTI-LABEL CLASSIFICATIONS;

EID: 84875422639     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-012-5312-9     Document Type: Article
Times cited : (24)

References (28)
  • 1
    • 0001160588 scopus 로고
    • What size net gives valid generalization?
    • 10.1162/neco.1989.1.1.151
    • Baum, E. B.; & Haussler, D. (1989). What size net gives valid generalization? Neural Computation, 1(1), 151-160.
    • (1989) Neural Computation , vol.1 , Issue.1 , pp. 151-160
    • Baum, E.B.1    Haussler, D.2
  • 2
    • 0024750852 scopus 로고
    • Learnability and the Vapnik-Chervonenkis dimension
    • 1072253 0697.68079 10.1145/76359.76371
    • Blumer, A.; Ehrenfeucht, A.; Haussler, D.; & Warmuth, M. K. (1989). Learnability and the Vapnik-Chervonenkis dimension. Journal of the ACM, 36(4), 929-965.
    • (1989) Journal of the ACM , vol.36 , Issue.4 , pp. 929-965
    • Blumer, A.1    Ehrenfeucht, A.2    Haussler, D.3    Warmuth, M.K.4
  • 3
    • 77956522919 scopus 로고    scopus 로고
    • Bayes optimal multilabel classification via probabilistic classifier chains
    • Haifa, Israel
    • Dembczynski, K.; Cheng, W.; & Hullermeier, E. (2010a). Bayes optimal multilabel classification via probabilistic classifier chains. In Proc. ICML 2010, Haifa, Israel.
    • (2010) Proc. ICML 2010
    • Dembczynski, K.1    Cheng, W.2    Hullermeier, E.3
  • 5
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • 2274360 1222.68184
    • Demsar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7, 1-30.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1
  • 6
    • 33846069101 scopus 로고    scopus 로고
    • The VC dimension of k-fold union
    • 2291190 1185.68373 10.1016/j.ipl.2006.10.004
    • Eisenstat, D.; & Angluin, D. (2007). The VC dimension of k-fold union. Information Processing Letters, 101(5), 181-184.
    • (2007) Information Processing Letters , vol.101 , Issue.5 , pp. 181-184
    • Eisenstat, D.1    Angluin, D.2
  • 7
    • 70350028703 scopus 로고    scopus 로고
    • K-fold unions of low-dimensional concept classes
    • 2571754 1209.68350 10.1016/j.ipl.2009.09.005
    • Eisenstat, D. (2009). k-fold unions of low-dimensional concept classes. Information Processing Letters, 109(23-24), 1232-1234.
    • (2009) Information Processing Letters , vol.109 , Issue.23-24 , pp. 1232-1234
    • Eisenstat, D.1
  • 8
    • 33745767102 scopus 로고    scopus 로고
    • Collective multi-label classification
    • Ghamrawi, N.; & McCallum, A. (2005). Collective multi-label classification. In CIKM 2005 (pp. 195-200).
    • (2005) CIKM 2005 , pp. 195-200
    • Ghamrawi, N.1    McCallum, A.2
  • 9
    • 0001553979 scopus 로고
    • Toward efficient agnostic learning
    • 0938.68797
    • Kearns, M. J.; Schapire, R. E.; & Sellie, L. (1994). Toward efficient agnostic learning. Machine Learning, 17(2-3), 115-141.
    • (1994) Machine Learning , vol.17 , Issue.2-3 , pp. 115-141
    • Kearns, M.J.1    Schapire, R.E.2    Sellie, L.3
  • 10
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • 0904.68143 10.1016/S0004-3702(97)00043-X
    • Kohavi, R.; & John, G. H. (1997). Wrappers for feature subset selection. Artificial Intelligence, 97(1-2), 273-324.
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 14
    • 38349121661 scopus 로고    scopus 로고
    • Genetic algorithm-based feature set partitioning for classification problems
    • 10.1016/j.patcog.2007.10.013 10.1016/j.patcog.2007.10.013
    • Rokach, L. (2008). Genetic algorithm-based feature set partitioning for classification problems. Pattern Recognition, 41(5), 1693-1717. doi: 10.1016/j.patcog.2007.10.013.
    • (2008) Pattern Recognition , vol.41 , Issue.5 , pp. 1693-1717
    • Rokach, L.1
  • 15
    • 84879747849 scopus 로고    scopus 로고
    • Series in machine perception and artificial intelligence 75 World Scientific Singapore 1187.68495
    • Rokach, L. (2010). Pattern classification using ensemble methods. Series in machine perception and artificial intelligence: Vol. 75. Singapore: World Scientific.
    • (2010) Pattern Classification Using Ensemble Methods
    • Rokach, L.1
  • 16
    • 38349127796 scopus 로고    scopus 로고
    • Feature set decomposition for decision trees
    • Rokach, L.; & Maimon, O. (2005). Feature set decomposition for decision trees. Journal of Intelligent Data Analysis, 9(2), 131-158.
    • (2005) Journal of Intelligent Data Analysis , vol.9 , Issue.2 , pp. 131-158
    • Rokach, L.1    Maimon, O.2
  • 17
    • 0033905095 scopus 로고    scopus 로고
    • Boostexter: A boosting-based system for text categorization
    • 0951.68561 10.1023/A:1007649029923
    • Schapire, R. E.; & Singer, Y. (2000). Boostexter: a boosting-based system for text categorization. Machine Learning, 39(2-3), 135-168.
    • (2000) Machine Learning , vol.39 , Issue.2-3 , pp. 135-168
    • Schapire, R.E.1    Singer, Y.2
  • 23
    • 0001024505 scopus 로고
    • On the uniform convergence of relative frequencies of events to their probabilities
    • 0247.60005 10.1137/1116025
    • Vapnik, V. N.; & Chervonenkis, A. Y. (1971). On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and Its Applications, 16, 264-279.
    • (1971) Theory of Probability and Its Applications , vol.16 , pp. 264-279
    • Vapnik, V.N.1    Chervonenkis, A.Y.2
  • 25
    • 0026692226 scopus 로고
    • Stacked generalization
    • 10.1016/S0893-6080(05)80023-1
    • Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5, 241-259.
    • (1992) Neural Networks , vol.5 , pp. 241-259
    • Wolpert, D.H.1
  • 26
    • 77958544287 scopus 로고    scopus 로고
    • Constructing a fast algorithm for multi-label classification with support vector data description
    • Xu, J. (2010). Constructing a fast algorithm for multi-label classification with support vector data description. In IEEE international conference on granular computing (pp. 817-821).
    • (2010) IEEE International Conference on Granular Computing , pp. 817-821
    • Xu, J.1
  • 27
    • 67650995440 scopus 로고    scopus 로고
    • Feature selection for multi-label naive Bayes classification
    • 1193.68219 10.1016/j.ins.2009.06.010
    • Zhang, M. L.; Peña, J. M.; & Robles, V. (2009). Feature selection for multi-label naive Bayes classification. Information Sciences, 179(19), 3218-3229.
    • (2009) Information Sciences , vol.179 , Issue.19 , pp. 3218-3229
    • Zhang, M.L.1    Peña, J.M.2    Robles, V.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.