메뉴 건너뛰기




Volumn 106, Issue , 2013, Pages 95-102

A selective Bayes classifier with meta-heuristics for incomplete data

Author keywords

Electromagnetism like Mechanism; Feature selection; Incomplete data; Missing at random; Robust Bayes Classifier

Indexed keywords

BAYES CLASSIFIER; CLASSIFICATION APPROACH; CLASSIFICATION PERFORMANCE; ELECTROMAGNETISM-LIKE MECHANISM ALGORITHMS; ELECTROMAGNETISM-LIKE MECHANISMS; FEATURE SELECTION AND CLASSIFICATION; INCOMPLETE DATA; MISSING AT RANDOMS;

EID: 84875402925     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2012.10.020     Document Type: Article
Times cited : (16)

References (37)
  • 2
    • 0026992322 scopus 로고
    • Proceedings of the Tenth National Conference on Artificial Intelligence, San Jose, California, July 12-16
    • P. Langley, W. Iba, K. Thompson, An analysis of Bayesian classifiers, in: Proceedings of the Tenth National Conference on Artificial Intelligence, San Jose, California, July 12-16 1992, pp. 223-228.
    • (1992) An analysis of Bayesian classifiers , pp. 223-228
    • Langley, P.1    Iba, W.2    Thompson, K.3
  • 4
    • 0041491595 scopus 로고    scopus 로고
    • Improving simple Bayes
    • Charles University, Prague, M. van Someren, G. Widmer (Eds.)
    • Kohavi R., Becker B., Sommerfield D. Improving simple Bayes. Poster Papers of the ECML-97 1997, Charles University, Prague, pp. 78-87. M. van Someren, G. Widmer (Eds.).
    • (1997) Poster Papers of the ECML-97 , pp. 78-87
    • Kohavi, R.1    Becker, B.2    Sommerfield, D.3
  • 5
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • Dempster A.P., Laird N.M., Rubin D.B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Statist. Soc. Ser. B 1977, 39(1):1-38.
    • (1977) J. R. Statist. Soc. Ser. B , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 6
    • 44949116897 scopus 로고    scopus 로고
    • Classification of data with missing elements and outliers
    • Stanimirova I., Walczak B. Classification of data with missing elements and outliers. Talanta 2008, 76(3):602-609.
    • (2008) Talanta , vol.76 , Issue.3 , pp. 602-609
    • Stanimirova, I.1    Walczak, B.2
  • 7
    • 33947303537 scopus 로고    scopus 로고
    • Dealing with missing values and outliers in principal component analysis
    • Stanimirova I., Daszykowski M., Walczak B. Dealing with missing values and outliers in principal component analysis. Talanta 2007, 72(1):172-178.
    • (2007) Talanta , vol.72 , Issue.1 , pp. 172-178
    • Stanimirova, I.1    Daszykowski, M.2    Walczak, B.3
  • 8
    • 35548956430 scopus 로고    scopus 로고
    • Principal component analysis for data containing outliers and missing elements
    • Serneels S., Verdonck T. Principal component analysis for data containing outliers and missing elements. Comput. Statist. Data Anal. 2008, 52(3):1712-1727.
    • (2008) Comput. Statist. Data Anal. , vol.52 , Issue.3 , pp. 1712-1727
    • Serneels, S.1    Verdonck, T.2
  • 9
    • 84875401488 scopus 로고    scopus 로고
    • The Impact of Multiple Imputation for DACSEIS, Technical Report DACSEIS Research Paper Series 5, University of Erlangen-Nürnberg, Nürnberg, Germany
    • S. Rässler, The Impact of Multiple Imputation for DACSEIS, Technical Report DACSEIS Research Paper Series 5, University of Erlangen-Nürnberg, Nürnberg, Germany, 2004.
    • (2004)
    • Rässler, S.1
  • 12
    • 0035124121 scopus 로고    scopus 로고
    • Robust Bayes classifiers
    • Ramoni M., Sebastiani P. Robust Bayes classifiers. Artif. Intell. 2001, 125(1-2):209-226.
    • (2001) Artif. Intell. , vol.125 , Issue.1-2 , pp. 209-226
    • Ramoni, M.1    Sebastiani, P.2
  • 13
    • 0043198674 scopus 로고    scopus 로고
    • Robust learning with missing data
    • Ramoni M., Sebastiani P. Robust learning with missing data. Mach. Learn. 2001, 45(2):147-170.
    • (2001) Mach. Learn. , vol.45 , Issue.2 , pp. 147-170
    • Ramoni, M.1    Sebastiani, P.2
  • 14
    • 52249117614 scopus 로고    scopus 로고
    • Proceedings of the 2007 International Conference on Computational Intelligence and Security Workshops, Harbin, Heilongjiang, China, December 15-19
    • J.N. Chen, X.P. Xue, F.Z. Tian, H.K. Huang, An algorithm for classifying incomplete data with selective Bayes classifiers, in: Proceedings of the 2007 International Conference on Computational Intelligence and Security Workshops, Harbin, Heilongjiang, China, December 15-19 2007, pp. 445-448.
    • (2007) An algorithm for classifying incomplete data with selective Bayes classifiers , pp. 445-448
    • Chen, J.N.1    Xue, X.P.2    Tian, F.Z.3    Huang, H.K.4
  • 16
    • 44949102149 scopus 로고    scopus 로고
    • Classification of genomic data: some aspects of feature selection
    • Czekaj T., Wu W., Walczak B. Classification of genomic data: some aspects of feature selection. Talanta 2008, 76(3):564-574.
    • (2008) Talanta , vol.76 , Issue.3 , pp. 564-574
    • Czekaj, T.1    Wu, W.2    Walczak, B.3
  • 17
    • 22944452165 scopus 로고    scopus 로고
    • Exploratory basis pursuit classification
    • Brown M., Costen N.P. Exploratory basis pursuit classification. Pattern Recognition Lett. 2005, 26(12):1907-1915.
    • (2005) Pattern Recognition Lett. , vol.26 , Issue.12 , pp. 1907-1915
    • Brown, M.1    Costen, N.P.2
  • 20
    • 0742323824 scopus 로고    scopus 로고
    • Maximum likelihood estimation and model comparison for mixtures of structural equation models with ignorable missing data
    • Lee S.Y., Song X.Y. Maximum likelihood estimation and model comparison for mixtures of structural equation models with ignorable missing data. J. Classif. 2003, 20(2):221-255.
    • (2003) J. Classif. , vol.20 , Issue.2 , pp. 221-255
    • Lee, S.Y.1    Song, X.Y.2
  • 21
    • 34249966007 scopus 로고
    • The CN2 induction algorithm
    • Clark P., Niblett T. The CN2 induction algorithm. Mach. Learn. 1989, 3(4):261-283.
    • (1989) Mach. Learn. , vol.3 , Issue.4 , pp. 261-283
    • Clark, P.1    Niblett, T.2
  • 22
    • 10844277106 scopus 로고    scopus 로고
    • Nearest neighbor approach in the least-squares data imputation algorithms
    • Wasito I., Mirkin B. Nearest neighbor approach in the least-squares data imputation algorithms. Inf. Sci. 2005, 169(1-2):1-25.
    • (2005) Inf. Sci , vol.169 , Issue.1-2 , pp. 1-25
    • Wasito, I.1    Mirkin, B.2
  • 24
    • 78650175506 scopus 로고    scopus 로고
    • A neural network-based framework for the reconstruction of incomplete data sets
    • Gheyas I.A., Smith L.S. A neural network-based framework for the reconstruction of incomplete data sets. Neurocomputing 2010, 73(16-18):3039-3065.
    • (2010) Neurocomputing , vol.73 , Issue.16-18 , pp. 3039-3065
    • Gheyas, I.A.1    Smith, L.S.2
  • 25
    • 0002081757 scopus 로고
    • Self-organization with partial data
    • Samad T., Harp S.A. Self-organization with partial data. Network-Comput. Neural Syst. 1992, 3(2):205-212.
    • (1992) Network-Comput. Neural Syst. , vol.3 , Issue.2 , pp. 205-212
    • Samad, T.1    Harp, S.A.2
  • 26
    • 0141904587 scopus 로고    scopus 로고
    • Application of self-organising maps for data mining with incomplete data sets
    • Wang S.H. Application of self-organising maps for data mining with incomplete data sets. Neural Comput. Appl. 2003, 12(1):42-48.
    • (2003) Neural Comput. Appl. , vol.12 , Issue.1 , pp. 42-48
    • Wang, S.H.1
  • 27
    • 77649236297 scopus 로고    scopus 로고
    • X-SOM and L-SOM: a double classification approach for missing value imputation
    • Merlin P., Sorjamaa A., Maillet B., Lendasse A. X-SOM and L-SOM: a double classification approach for missing value imputation. Neurocomputing 2010, 73(7-9):1103-1108.
    • (2010) Neurocomputing , vol.73 , Issue.7-9 , pp. 1103-1108
    • Merlin, P.1    Sorjamaa, A.2    Maillet, B.3    Lendasse, A.4
  • 30
    • 84857015391 scopus 로고    scopus 로고
    • Imputation methods for missing data in education diagnostic evaluation
    • Fernandez-Alonso R., Suarez-Alvarez J. Imputation methods for missing data in education diagnostic evaluation. Psicothema 2012, 24(1):167-175.
    • (2012) Psicothema , vol.24 , Issue.1 , pp. 167-175
    • Fernandez-Alonso, R.1    Suarez-Alvarez, J.2
  • 31
    • 84865149772 scopus 로고    scopus 로고
    • Optimal simultaneous superpositioning of multiple structures with missing data
    • Theobald D.L., Steindel P.A. Optimal simultaneous superpositioning of multiple structures with missing data. Bioinformatics 2012, 28(15):1972-1979.
    • (2012) Bioinformatics , vol.28 , Issue.15 , pp. 1972-1979
    • Theobald, D.L.1    Steindel, P.A.2
  • 32
    • 84867922216 scopus 로고    scopus 로고
    • An electromagnetism-like mechanism for global optimization
    • Birbil Ş.İ., Fang S.C. An electromagnetism-like mechanism for global optimization. J. Global Optim. 2003, 25(3):263-282.
    • (2003) J. Global Optim. , vol.25 , Issue.3 , pp. 263-282
    • Birbil, S.I.1    Fang, S.C.2
  • 33
    • 78650540340 scopus 로고    scopus 로고
    • Applying electromagnetism-like mechanism for feature selection
    • Su C.T., Lin H.C. Applying electromagnetism-like mechanism for feature selection. Inf. Sci. 2011, 181(5):972-986.
    • (2011) Inf. Sci. , vol.181 , Issue.5 , pp. 972-986
    • Su, C.T.1    Lin, H.C.2
  • 34
    • 77952642202 scopus 로고
    • Incremental induction of decision trees
    • Utgoff P.E. Incremental induction of decision trees. Mach. Learn. 1989, 4(2):161-186.
    • (1989) Mach. Learn. , vol.4 , Issue.2 , pp. 161-186
    • Utgoff, P.E.1
  • 36
    • 50949109918 scopus 로고    scopus 로고
    • A selective Bayes classifier for classifying incomplete data based on gain ratio
    • Chen J.N., Huang H.K., Tian F.Z., Tian S.F. A selective Bayes classifier for classifying incomplete data based on gain ratio. Knowl.-Based Syst. 2008, 21(7):530-534.
    • (2008) Knowl.-Based Syst. , vol.21 , Issue.7 , pp. 530-534
    • Chen, J.N.1    Huang, H.K.2    Tian, F.Z.3    Tian, S.F.4
  • 37
    • 33947422559 scopus 로고    scopus 로고
    • Using parallelization and hardware concurrency to improve the performance of a genetic algorithm
    • Tirumalai V., Ricks K.G., Woodbury K.A. Using parallelization and hardware concurrency to improve the performance of a genetic algorithm. Concurrency Comput.: Pract. Exper. 2007, 19(4):443-462.
    • (2007) Concurrency Comput.: Pract. Exper. , vol.19 , Issue.4 , pp. 443-462
    • Tirumalai, V.1    Ricks, K.G.2    Woodbury, K.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.