메뉴 건너뛰기




Volumn 106, Issue , 2013, Pages 51-60

Low-rank quadratic semidefinite programming

Author keywords

Eigenvalue decomposition; Kernel learning; Low rank and sparse matrix approximation; Metric learning; Semidefinite programming

Indexed keywords

EIGENVALUE DECOMPOSITION; KERNEL LEARNING; METRIC LEARNING; SEMI-DEFINITE PROGRAMMING; SPARSE MATRICES;

EID: 84875397094     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2012.10.014     Document Type: Article
Times cited : (3)

References (35)
  • 1
    • 84865234111 scopus 로고    scopus 로고
    • Learning a distance metric by empirical loss minimization
    • W. Bian, D. Tao, Learning a distance metric by empirical loss minimization, in: IJCAI, 2011, pp. 1186-1191.
    • (2011) IJCAI , pp. 1186-1191
    • Bian, W.1    Tao, D.2
  • 2
    • 79953054794 scopus 로고    scopus 로고
    • Max-min distance analysis by using sequential SDP relaxation for dimension reduction
    • Bian W., Tao D. Max-min distance analysis by using sequential SDP relaxation for dimension reduction. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33(5):1037-1050.
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell. , vol.33 , Issue.5 , pp. 1037-1050
    • Bian, W.1    Tao, D.2
  • 4
    • 84864057309 scopus 로고    scopus 로고
    • Local minima and convergence in low-rank semidefinite programming
    • Burer S., Monteiro R.D.C. Local minima and convergence in low-rank semidefinite programming. Math. Programming 2003, 103:2005.
    • (2003) Math. Programming , vol.103 , pp. 2005
    • Burer, S.1    Monteiro, R.D.C.2
  • 5
    • 79960675858 scopus 로고    scopus 로고
    • Robust principal component analysis?
    • Candès E.J., Li X., Ma Y., Wright J. Robust principal component analysis?. J. ACM 2011, 58(3):11.
    • (2011) J. ACM , vol.58 , Issue.3 , pp. 11
    • Candès, E.J.1    Li, X.2    Ma, Y.3    Wright, J.4
  • 6
    • 33745604236 scopus 로고    scopus 로고
    • Stable signal recovery from incomplete and inaccurate measurements
    • Candès E.J., Romberg J.K., Tao T. Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 2006, 59(8):1207-1223.
    • (2006) Commun. Pure Appl. Math. , vol.59 , Issue.8 , pp. 1207-1223
    • Candès, E.J.1    Romberg, J.K.2    Tao, T.3
  • 7
    • 56449083666 scopus 로고    scopus 로고
    • Training SVM with indefinite kernels
    • J. Chen, J. Ye, Training SVM with indefinite kernels, in: ICML, 2008, pp. 136-143.
    • (2008) ICML , pp. 136-143
    • Chen, J.1    Ye, J.2
  • 9
    • 84875398626 scopus 로고    scopus 로고
    • Subsampling algorithms for semidefinite programming
    • D'Aspremont A. Subsampling algorithms for semidefinite programming. Stochastic Syst. 2011, 2(1):274-305.
    • (2011) Stochastic Syst. , vol.2 , Issue.1 , pp. 274-305
    • D'Aspremont, A.1
  • 12
    • 0041494125 scopus 로고    scopus 로고
    • Efficient SVM training using low-rank kernel representations
    • Fine S., Scheinberg K. Efficient SVM training using low-rank kernel representations. J. Mach. Learn. Res. 2001, 2:243-264.
    • (2001) J. Mach. Learn. Res. , vol.2 , pp. 243-264
    • Fine, S.1    Scheinberg, K.2
  • 13
    • 0032131701 scopus 로고    scopus 로고
    • Jacobi-Davidson style QR and QZ algorithms for the reduction of matrix pencils
    • Fokkema D.R., Sleijpen G.L.G., derVorst H.A.V. Jacobi-Davidson style QR and QZ algorithms for the reduction of matrix pencils. J. Sci. Comput. 1998, 20:94-125.
    • (1998) J. Sci. Comput. , vol.20 , pp. 94-125
    • Fokkema, D.R.1    Sleijpen, G.L.G.2    derVorst, H.A.V.3
  • 16
    • 0013387067 scopus 로고    scopus 로고
    • A globally convergent version of the Polak-Ribière conjugate gradient method
    • Grippo L., Lucidi S. A globally convergent version of the Polak-Ribière conjugate gradient method. Math. Programming 1997, 77:375-391.
    • (1997) Math. Programming , vol.77 , pp. 375-391
    • Grippo, L.1    Lucidi, S.2
  • 17
    • 79959579027 scopus 로고    scopus 로고
    • Manifold regularized discriminative nonnegative matrix factorization with fast gradient descent
    • Guan N., Tao D., Luo Z., Yuan B. Manifold regularized discriminative nonnegative matrix factorization with fast gradient descent. IEEE Trans. Image Process. 2011, 20(7):2030-2048.
    • (2011) IEEE Trans. Image Process. , vol.20 , Issue.7 , pp. 2030-2048
    • Guan, N.1    Tao, D.2    Luo, Z.3    Yuan, B.4
  • 18
    • 84861164231 scopus 로고    scopus 로고
    • NeNMF. an optimal gradient method for nonnegative matrix factorization
    • Guan N., Tao D., Luo Z., Yuan B. NeNMF. an optimal gradient method for nonnegative matrix factorization. IEEE Trans. Image Process. 2012, 60(6):2882-2898.
    • (2012) IEEE Trans. Image Process. , vol.60 , Issue.6 , pp. 2882-2898
    • Guan, N.1    Tao, D.2    Luo, Z.3    Yuan, B.4
  • 19
    • 84865442402 scopus 로고    scopus 로고
    • Online nonnegative matrix factorization with robust stochastic approximation
    • Guan N., Tao D., Luo Z., Yuan B. Online nonnegative matrix factorization with robust stochastic approximation. IEEE Trans. Neural Networks Learn. Syst. 2012, 23(7):1087-1099.
    • (2012) IEEE Trans. Neural Networks Learn. Syst. , vol.23 , Issue.7 , pp. 1087-1099
    • Guan, N.1    Tao, D.2    Luo, Z.3    Yuan, B.4
  • 20
    • 85162055589 scopus 로고    scopus 로고
    • Inductive regularized learning of kernel functions
    • P. Jain, B. Kulis, I.S. Dhillon, Inductive regularized learning of kernel functions, in: NIPS, 2010, pp. 946-954.
    • (2010) NIPS , pp. 946-954
    • Jain, P.1    Kulis, B.2    Dhillon, I.S.3
  • 21
    • 77956086700 scopus 로고    scopus 로고
    • Low-rank optimization on the cone of positive semidefinite matrices
    • Journée M., Bach F., Absil P.-A., Sepulchre R. Low-rank optimization on the cone of positive semidefinite matrices. SIAM J. Optim. May 2010, 20:2327-2351.
    • (2010) SIAM J. Optim. , vol.20 , pp. 2327-2351
    • Journée, M.1    Bach, F.2    Absil, P.-A.3    Sepulchre, R.4
  • 22
    • 61749094150 scopus 로고    scopus 로고
    • Low-rank kernel learning with Bregman matrix divergences
    • Kulis B., Sustik M.A., Dhillon I.S. Low-rank kernel learning with Bregman matrix divergences. J. Mach. Learn. Res. 2009, 10:341-376.
    • (2009) J. Mach. Learn. Res. , vol.10 , pp. 341-376
    • Kulis, B.1    Sustik, M.A.2    Dhillon, I.S.3
  • 23
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • Lee D., Seung H., et al. Learning the parts of objects by non-negative matrix factorization. Nature 1999, 6755(401):788-791.
    • (1999) Nature , vol.6755 , Issue.401 , pp. 788-791
    • Lee, D.1    Seung, H.2
  • 25
    • 79952746338 scopus 로고    scopus 로고
    • Regression on fixed-rank positive semidefinite matrices. a Riemannian approach
    • Meyer G., Bonnabel S., Sepulchre R. Regression on fixed-rank positive semidefinite matrices. a Riemannian approach. J. Mach. Learn. Res. 2011, 12:593-625.
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 593-625
    • Meyer, G.1    Bonnabel, S.2    Sepulchre, R.3
  • 26
    • 33646730150 scopus 로고    scopus 로고
    • Cubic regularization of newton method and its global performance
    • Nesterov Y., Polyak B.T. Cubic regularization of newton method and its global performance. Math. Programming August 2006, 108:177-205.
    • (2006) Math. Programming , vol.108 , pp. 177-205
    • Nesterov, Y.1    Polyak, B.T.2
  • 28
    • 31844451557 scopus 로고    scopus 로고
    • Fast maximum margin matrix factorization for collaborative prediction
    • J.D.M. Rennie, N. Srebro, Fast maximum margin matrix factorization for collaborative prediction, in: ICML, 2005, pp. 713-719.
    • (2005) ICML , pp. 713-719
    • Rennie, J.D.M.1    Srebro, N.2
  • 30
    • 84862301327 scopus 로고    scopus 로고
    • An information geometry approach for distance metric learning
    • Wang S., Jin R. An information geometry approach for distance metric learning. AISTATS 2009, 5:591-598.
    • (2009) AISTATS , vol.5 , pp. 591-598
    • Wang, S.1    Jin, R.2
  • 31
    • 61749090884 scopus 로고    scopus 로고
    • Distance metric learning for large margin nearest neighbor classification
    • Weinberger K.Q., Saul L.K. Distance metric learning for large margin nearest neighbor classification. J. Mach. Learn. Res. 2009, 10:207-244.
    • (2009) J. Mach. Learn. Res. , vol.10 , pp. 207-244
    • Weinberger, K.Q.1    Saul, L.K.2
  • 32
    • 79952297247 scopus 로고    scopus 로고
    • Alternating direction augmented Lagrangian methods for semidefinite programming
    • Z. Wen, D. Goldfarb, W. Yin, Alternating direction augmented Lagrangian methods for semidefinite programming, Math. Programming Comput 2 (3) (2010) 203-230.
    • (2010) Math. Programming Comput , vol.2 , Issue.3 , pp. 203-230
    • Wen, Z.1    Goldfarb, D.2    Yin, W.3
  • 33
    • 84899010839 scopus 로고    scopus 로고
    • Using the Nyström method to speed up kernel machines
    • MIT Press
    • C. Williams, M. Seeger, Using the Nyström method to speed up kernel machines, in: NIPS, MIT Press, 2001, pp. 682-688.
    • (2001) NIPS , pp. 682-688
    • Williams, C.1    Seeger, M.2
  • 34
    • 56449087564 scopus 로고    scopus 로고
    • Improved Nyström low-rank approximation and error analysis
    • K. Zhang, I.W. Tsang, J.T. Kwok, Improved Nyström low-rank approximation and error analysis, in: ICML, 2008, pp. 1232-1239.
    • (2008) ICML , pp. 1232-1239
    • Zhang, K.1    Tsang, I.W.2    Kwok, J.T.3
  • 35
    • 80053437358 scopus 로고    scopus 로고
    • GoDec: randomized low-rank & sparse matrix decomposition in noisy case
    • T. Zhou, D. Tao, GoDec: randomized low-rank & sparse matrix decomposition in noisy case, in: ICML, 2011, pp. 33-40.
    • (2011) ICML , pp. 33-40
    • Zhou, T.1    Tao, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.