메뉴 건너뛰기




Volumn 139, Issue 671, 2013, Pages 515-523

The impact of localization and observation averaging for convective-scale data assimilation in a simple stochastic model

Author keywords

Data assimilation; Ensemble Transform Kalman Filter; Particle filter

Indexed keywords

BIRTH-DEATH PROCESS; DATA ASSIMILATION; DATA ASSIMILATION METHODS; IMPORTANCE RE SAMPLINGS; LOCAL OBSERVATIONS; NONLINEAR AMPLIFICATION; PARTICLE FILTER; RANDOM PERTURBATIONS;

EID: 84875382142     PISSN: 00359009     EISSN: 1477870X     Source Type: Journal    
DOI: 10.1002/qj.1980     Document Type: Article
Times cited : (7)

References (40)
  • 1
    • 68249141511 scopus 로고    scopus 로고
    • A multicase comparative assessment of the ensemble Kalman filter for assimilation of radar observations. Part I. Storm-scale analyses.
    • Aksoy A, Dowell DC, Snyder C. 2009. A multicase comparative assessment of the ensemble Kalman filter for assimilation of radar observations. Part I. Storm-scale analyses. Mon. Weather Rev. 137: 1805-1824.
    • (2009) Mon. Weather Rev. , vol.137 , pp. 1805-1824
    • Aksoy, A.1    Dowell, D.C.2    Snyder, C.3
  • 2
    • 77955524010 scopus 로고    scopus 로고
    • A multicase comparative assessment of the ensemble kalman filter for assimilation of radar observations. Part II. Short-range ensemble forecasts.
    • Aksoy A, Dowell DC, Snyder C. 2010. A multicase comparative assessment of the ensemble kalman filter for assimilation of radar observations. Part II. Short-range ensemble forecasts. Mon. Weather Rev. 138: 1273-1292.
    • (2010) Mon. Weather Rev. , vol.138 , pp. 1273-1292
    • Aksoy, A.1    Dowell, D.C.2    Snyder, C.3
  • 3
    • 34047225806 scopus 로고    scopus 로고
    • Radial Wind Super-Obs from the WSR-88D radars in the NCEP Operational Assimilation System
    • Alpert JC, Kumar VK. 2007. Radial Wind Super-Obs from the WSR-88D radars in the NCEP Operational Assimilation System. Mon. Weather Rev. 135: 1090-1109.
    • (2007) Mon. Weather Rev. , vol.135 , pp. 1090-1109
    • Alpert, J.C.1    Kumar, V.K.2
  • 4
    • 0003787146 scopus 로고
    • Rand Corporation Research Study Series, Princeton University Press: Princeton, NJ.
    • Bellman R. 1957. Dynamic Programming. Rand Corporation Research Study Series, Princeton University Press: Princeton, NJ.
    • (1957) Dynamic Programming
    • Bellman, R.1
  • 5
    • 0004020376 scopus 로고
    • Rand Corporation Research Study Series, Princeton University Press: Princeton, NJ.
    • Bellman R. 1961. Adaptive Control Processes: A Guided Tour. Rand Corporation Research Study Series, Princeton University Press: Princeton, NJ.
    • (1961) Adaptive Control Processes: A Guided Tour
    • Bellman, R.1
  • 6
    • 57949085983 scopus 로고    scopus 로고
    • Curse-of-dimensionality revisited: collapse of the particle filter in very large scale systems
    • Bengtsson T, Bickel P, Li B. 2008. Curse-of-dimensionality revisited: collapse of the particle filter in very large scale systems. IMS Collections 2: 316-334.
    • (2008) IMS Collections , vol.2 , pp. 316-334
    • Bengtsson, T.1    Bickel, P.2    Li, B.3
  • 8
    • 0033149819 scopus 로고    scopus 로고
    • Adaptive Sampling with the Ensemble Transform Kalman Filter. Part I. Theoretical Aspects.
    • Bishop C, Toth Z. 1999. Adaptive Sampling with the Ensemble Transform Kalman Filter. Part I. Theoretical Aspects. Mon. Weather Rev. 56: 1748-1765.
    • (1999) Mon. Weather Rev. , vol.56 , pp. 1748-1765
    • Bishop, C.1    Toth, Z.2
  • 9
    • 77955429089 scopus 로고    scopus 로고
    • Beyond Gaussian statistical modeling in geophysical data assimilation
    • Bocquet M, Pires CA, Wu L. 2010. Beyond Gaussian statistical modeling in geophysical data assimilation. Mon. Weather Rev. 138: 2997-3023.
    • (2010) Mon. Weather Rev. , vol.138 , pp. 2997-3023
    • Bocquet, M.1    Pires, C.A.2    Wu, L.3
  • 10
    • 0035302268 scopus 로고    scopus 로고
    • Observing-system experiments in the ECMWF 4D-Var data assimilation system
    • Bouttier F, Kelly G. 2001. Observing-system experiments in the ECMWF 4D-Var data assimilation system. Q. J. R. Meteorol. Soc. 127: 1469-1488.
    • (2001) Q. J. R. Meteorol. Soc. , vol.127 , pp. 1469-1488
    • Bouttier, F.1    Kelly, G.2
  • 11
    • 0343358522 scopus 로고    scopus 로고
    • The operational implementation of 4D-Var
    • Bouttier F, Rabier F. 1998. The operational implementation of 4D-Var. ECMWF Newsl. 78: 2-5. http://ecmwf.int/publications/newsletters/pdf/78.pdf.
    • (1998) ECMWF Newsl. , vol.78 , pp. 2-5
    • Bouttier, F.1    Rabier, F.2
  • 12
    • 24144470136 scopus 로고    scopus 로고
    • A comparison between the 4dvar and the ensemble kalman filter techniques for radar data assimilation
    • Caya A, Sun J, Snyder C. 2005. A comparison between the 4dvar and the ensemble kalman filter techniques for radar data assimilation. Mon. Weather Rev. 133: 3081-3094.
    • (2005) Mon. Weather Rev. , vol.133 , pp. 3081-3094
    • Caya, A.1    Sun, J.2    Snyder, C.3
  • 14
    • 33747888065 scopus 로고    scopus 로고
    • Fluctuations in an equilibrium convective ensemble. Part I. Theoretical formulation.
    • Craig GC, Cohen BG. 2006. Fluctuations in an equilibrium convective ensemble. Part I. Theoretical formulation. J. Atmos. Sci. 63: 1996-2004.
    • (2006) J. Atmos. Sci. , vol.63 , pp. 1996-2004
    • Craig, G.C.1    Cohen, B.G.2
  • 15
    • 4444315259 scopus 로고    scopus 로고
    • Wind and temperature retrievals in the 17 May 1981 Arcadia, Oklahoma, supercell: Ensemble Kalman Filter experiments
    • Dowell DC, Zhang F, Wicker LJ, Snyder C, Crook NA. 2004. Wind and temperature retrievals in the 17 May 1981 Arcadia, Oklahoma, supercell: Ensemble Kalman Filter experiments. Mon. Weather Rev. 132: 1982-2005.
    • (2004) Mon. Weather Rev. , vol.132 , pp. 1982-2005
    • Dowell, D.C.1    Zhang, F.2    Wicker, L.J.3    Snyder, C.4    Crook, N.A.5
  • 16
    • 79951643932 scopus 로고    scopus 로고
    • Ensemble Kalman Filter assimilation of radar observations of the 8 May 2003 Oklahoma City supercell: influences of reflectivity observations on storm-scale analyses
    • Dowell D, Wicker L, Snyder C. 2011. Ensemble Kalman Filter assimilation of radar observations of the 8 May 2003 Oklahoma City supercell: influences of reflectivity observations on storm-scale analyses. Mon. Weather Rev. 139: 272-294.
    • (2011) Mon. Weather Rev. , vol.139 , pp. 272-294
    • Dowell, D.1    Wicker, L.2    Snyder, C.3
  • 17
    • 57349145469 scopus 로고    scopus 로고
    • An atmospheric model of intermediate complexity for data assimilation studies
    • Ehrendorfer M, Errico R. 2008. An atmospheric model of intermediate complexity for data assimilation studies. Q. J. R. Meteorol. Soc. 134: 1717-1732.
    • (2008) Q. J. R. Meteorol. Soc. , vol.134 , pp. 1717-1732
    • Ehrendorfer, M.1    Errico, R.2
  • 18
    • 0028193070 scopus 로고
    • Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics
    • Evensen G. 1994. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res. 99: 10143-10162.
    • (1994) J. Geophys. Res. , vol.99 , pp. 10143-10162
    • Evensen, G.1
  • 19
    • 0032024819 scopus 로고    scopus 로고
    • Data assimilation using an ensemble kalman filter technique
    • Houtekamer PL, Mitchell HL. 1998. Data assimilation using an ensemble kalman filter technique. Mon. Weather Rev. 126: 796-811.
    • (1998) Mon. Weather Rev. , vol.126 , pp. 796-811
    • Houtekamer, P.L.1    Mitchell, H.L.2
  • 20
    • 0035129828 scopus 로고    scopus 로고
    • A sequential ensemble kalman filter for atmospheric data assimilation
    • Houtekamer PL, Mitchell HL. 2001. A sequential ensemble kalman filter for atmospheric data assimilation. Mon. Weather Rev. 129: 123-137.
    • (2001) Mon. Weather Rev. , vol.129 , pp. 123-137
    • Houtekamer, P.L.1    Mitchell, H.L.2
  • 21
    • 34248675795 scopus 로고    scopus 로고
    • Efficient data assimilation for spatiotemporal chaos: a local ensemble transform kalman filter
    • Hunt BR, Kostelich EJ, Szunyogh I. 2007. Efficient data assimilation for spatiotemporal chaos: a local ensemble transform kalman filter. Physica D 230: 112-126.
    • (2007) Physica D , vol.230 , pp. 112-126
    • Hunt, B.R.1    Kostelich, E.J.2    Szunyogh, I.3
  • 22
    • 0000415898 scopus 로고    scopus 로고
    • A latent heat nudging scheme for the assimilation of precipitation data into an operational mesoscale model
    • Jones C, Macpherson B. 1997. A latent heat nudging scheme for the assimilation of precipitation data into an operational mesoscale model. Met. Apps 4: 269-277.
    • (1997) Met. Apps , vol.4 , pp. 269-277
    • Jones, C.1    Macpherson, B.2
  • 23
    • 85024429815 scopus 로고
    • A new approach to linear filtering and prediction problems
    • Kalman R. 1960. A new approach to linear filtering and prediction problems. Trans. ASME-J. Basic Eng. 82: 35-45.
    • (1960) Trans. ASME-J. Basic Eng. , vol.82 , pp. 35-45
    • Kalman, R.1
  • 24
    • 85024423711 scopus 로고
    • New results in linear filtering and prediction theory
    • Kalman R, Bucy R. 1961. New results in linear filtering and prediction theory. Trans. ASME-J. Basic Eng. 83: 95-107.
    • (1961) Trans. ASME-J. Basic Eng. , vol.83 , pp. 95-107
    • Kalman, R.1    Bucy, R.2
  • 25
    • 34848818178 scopus 로고    scopus 로고
    • Revisiting the latent heat nudging scheme for the rainfall assimilation of a simulated convective storm
    • Leuenberger D, Rossa A. 2007. Revisiting the latent heat nudging scheme for the rainfall assimilation of a simulated convective storm. Meteorol. Atmos. Phys. 98: 195-215.
    • (2007) Meteorol. Atmos. Phys. , vol.98 , pp. 195-215
    • Leuenberger, D.1    Rossa, A.2
  • 26
    • 0000241853 scopus 로고
    • Deterministic nonperiodic flow
    • Lorenz E. 1963. Deterministic nonperiodic flow. J. Atmos. Sci. 20: 130-141.
    • (1963) J. Atmos. Sci. , vol.20 , pp. 130-141
    • Lorenz, E.1
  • 27
    • 0001846226 scopus 로고
    • 'Predictability: a problem partly solved'
    • ECMWF: Reading, UK
    • Lorenz E. 1995. 'Predictability: a problem partly solved'. In Proceedings of Seminar on Predictability, Vol. 1. ECMWF: Reading, UK; 1-18.
    • (1995) Proceedings of Seminar on Predictability , vol.1 , pp. 1-18
    • Lorenz, E.1
  • 28
    • 20444468413 scopus 로고    scopus 로고
    • Designing chaotic models
    • Lorenz E. 2005. Designing chaotic models. J. Atmos. Sci. 62: 1574-1587.
    • (2005) J. Atmos. Sci. , vol.62 , pp. 1574-1587
    • Lorenz, E.1
  • 29
    • 0035530322 scopus 로고    scopus 로고
    • Operational experience with assimilation of rainfall data in the Met Office Mesoscale model
    • Macpherson B. 2001. Operational experience with assimilation of rainfall data in the Met Office Mesoscale model. Meteorol. Atmos. Phys. 76: 3-8.
    • (2001) Meteorol. Atmos. Phys. , vol.76 , pp. 3-8
    • Macpherson, B.1
  • 30
    • 0009441968 scopus 로고
    • Statistical analysis of a spatial birth-and-death process model with a view to modelling linear dune fields
    • Møller J, Sørenson M. 1994. Statistical analysis of a spatial birth-and-death process model with a view to modelling linear dune fields. Scand. J. Statist. 21: 1-19.
    • (1994) Scand. J. Statist. , vol.21 , pp. 1-19
    • Møller, J.1    Sørenson, M.2
  • 33
    • 38849155083 scopus 로고    scopus 로고
    • A stochastic parameterization for deep convection based on equilibrium statistics
    • Plant RS, Craig GC. 2008. A stochastic parameterization for deep convection based on equilibrium statistics. J. Atmos. Sci. 65: 87-105.
    • (2008) J. Atmos. Sci. , vol.65 , pp. 87-105
    • Plant, R.S.1    Craig, G.C.2
  • 35
    • 50949123739 scopus 로고    scopus 로고
    • Assimilation of radar-derived rain rates into the convective-scale model COSMO-DE at DWD
    • Stephan K, Klink S, Schraff C. 2008. Assimilation of radar-derived rain rates into the convective-scale model COSMO-DE at DWD. Q. J. R. Meteorol. Soc. 134: 1315-1326.
    • (2008) Q. J. R. Meteorol. Soc. , vol.134 , pp. 1315-1326
    • Stephan, K.1    Klink, S.2    Schraff, C.3
  • 36
    • 0031399793 scopus 로고    scopus 로고
    • Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I. Model development and simulated data experiments.
    • Sun J, Crook N. 1997. Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I. Model development and simulated data experiments. J. Atmos. Sci. 54: 1642-1661.
    • (1997) J. Atmos. Sci. , vol.54 , pp. 1642-1661
    • Sun, J.1    Crook, N.2
  • 37
    • 0031806784 scopus 로고    scopus 로고
    • Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part II. Retrieval experiments of an observed Florida convective storm.
    • Sun J, Crook N. 1998. Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part II. Retrieval experiments of an observed Florida convective storm. J. Atmos. Sci. 55: 835-852.
    • (1998) J. Atmos. Sci. , vol.55 , pp. 835-852
    • Sun, J.1    Crook, N.2
  • 38
    • 0023128058 scopus 로고
    • Variational assimilation of meteorological observations with the adjoint vorticity equation. I. Theory.
    • Talagrand O, Courtier P. 1983. Variational assimilation of meteorological observations with the adjoint vorticity equation. I. Theory. Q. J. R. Meteorol. Soc. 113: 1311-1328.
    • (1983) Q. J. R. Meteorol. Soc. , vol.113 , pp. 1311-1328
    • Talagrand, O.1    Courtier, P.2
  • 39
    • 74949130817 scopus 로고    scopus 로고
    • Particle filtering in geophysical systems
    • Van Leeuwen PJ. 2009. Particle filtering in geophysical systems. Mon. Weather Rev. 137: 4089-4114.
    • (2009) Mon. Weather Rev. , vol.137 , pp. 4089-4114
    • Van Leeuwen, P.J.1
  • 40
    • 68249160487 scopus 로고    scopus 로고
    • Cloud-resolving hurricane initialization and prediction through assimilation of Doppler radar observations with an ensemble Kalman filter
    • Zhang F, Weng Y, Sippel JA, Meng Z, Bishop CH. 2009. Cloud-resolving hurricane initialization and prediction through assimilation of Doppler radar observations with an ensemble Kalman filter. Mon. Weather Rev. 137: 2105-2125.
    • (2009) Mon. Weather Rev. , vol.137 , pp. 2105-2125
    • Zhang, F.1    Weng, Y.2    Sippel, J.A.3    Meng, Z.4    Bishop, C.H.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.