Different ways to improve the clinical effectiveness of radioimmunotherapy in solid tumors
Chatal J.F., Davodeau F., Cherel M., Barbet J. Different ways to improve the clinical effectiveness of radioimmunotherapy in solid tumors. J Cancer Res Ther 2009, 5:36-40.
An alternative pretargeting technology that so far has not been validated in the clinic uses the hybridization of DNA and its analogs: Liu GZ, Mang'era K, Liu N, Gupta S, Rusckowski M, Hnatowich D J. Tumor pretargeting in mice using Tc-99m-labeled morpholino, a DNA analog
An alternative pretargeting technology that so far has not been validated in the clinic uses the hybridization of DNA and its analogs: Liu GZ, Mang'era K, Liu N, Gupta S, Rusckowski M, Hnatowich D J. Tumor pretargeting in mice using Tc-99m-labeled morpholino, a DNA analog. J Nucl Med 2002;43:384-391; Kuijpers WHA, Bos ES, Kaspersen FM, Veeneman GH, Vanboeckel, CAA. Specific recognition of antibody oligonucleotide conjugates by radiolabeled antisense nucleotides - a novel approach for 2-step radioimmunotherapy of cancer. Bioconjugate Chem. 1993;4:94-102.
Specific recognition of antibody oligonucleotide conjugates by radiolabeled antisense nucleotides - a novel approach for 2-step radioimmunotherapy of cancer
Kuijpers WHA, Bos ES, Kaspersen FM, Veeneman GH, Vanboeckel, CAA. Specific recognition of antibody oligonucleotide conjugates by radiolabeled antisense nucleotides - a novel approach for 2-step radioimmunotherapy of cancer. Bioconjugate Chem. 1993;4:94-102.
Debets M.F., van Berkel S.S., Dommerholt J., Dirks A.J., Rutjes F.P.J.T., van Delft F.L. Bioconjugation with strained alkenes and alkynes. Acc Chem Res 2011, 44:805-815.
Metal-free triazole formation as a tool for bioconjugation
van Berkel S.S., Dirks A.J., Debets M.F., van Delft F.L., Cornelissen J.J.L.M., Nolte R.J.M., et al. Metal-free triazole formation as a tool for bioconjugation. Chembiochem 2007, 8:1504-1508.
Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity
Blackman M.L., Royzen M., Fox J.M. Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity. J Am Chem Soc 2008, 130:13518-13519.
In vivo chemistry for pretargeted tumor imaging in live mice
Rossin R., Renart Verkerk P., van den Bosch S., Vulders R., Verel I., Lub J., et al. In vivo chemistry for pretargeted tumor imaging in live mice. Angew Chem Int Ed 2010, 49:3375-3378.
Copper-free click chemistry for dynamic in vivo imaging
Baskin J.M., Prescher J.A., Laughlin S.T., Agard N.J., Chang P.V., Miller I.A., et al. Copper-free click chemistry for dynamic in vivo imaging. Proc Nat Acad Sci USA 2007, 104:16793-16797.
In vivo imaging of membrane-associated glycans in developing zebrafish
Laughlin S.T., Baskin J.M., Amacher S.L., Bertozzi C.R. In vivo imaging of membrane-associated glycans in developing zebrafish. Science 2008, 320:664-667.
Synthesis of phosphine and antibody-azide probes for in vivo Staudinger ligation in a pretargeted imaging and therapy approach
Vugts D.J., Vervoort A., Stigter-van Walsum M., Visser G.W., Robillard M.S., Versteegen R.M., et al. Synthesis of phosphine and antibody-azide probes for in vivo Staudinger ligation in a pretargeted imaging and therapy approach. Bioconjug Chem 2011, 22:2072-2081.
Visualizing metabolically labeled glycoconjugates of living cells by copper-free and fast Huisgen cycloadditions
Ning X., Guo J., Wolfert M.A., Boons G.-J. Visualizing metabolically labeled glycoconjugates of living cells by copper-free and fast Huisgen cycloadditions. Angew Chem Int Ed 2008, 47:2253-2255.
Protein modification by strain-promoted alkyne-nitrone cycloaddition
Ning X., Temming R.P., Dommerholt J., Guo J., Ania D.B., Debets M.F., et al. Protein modification by strain-promoted alkyne-nitrone cycloaddition. Angew Chem Int Ed 2010, 49:3065-3068.
Preventing thiol-yne addition improves the specificity of strain-promoted azide-alkyne cycloaddition
van Geel R., Pruijn G.J.M., van Delft F.L., Boelens W.C. Preventing thiol-yne addition improves the specificity of strain-promoted azide-alkyne cycloaddition. Bioconjug Chem 2012, 23:392-398.
The extraordinary ligand binding properties of human serum albumin
Fasano M., Curry S., Terreno E., Galliano M., Fanali G., Narciso P., et al. The extraordinary ligand binding properties of human serum albumin. IUBMB Life 2005, 57:787-796.
Gd(III) complexes as contrast agents for magnetic resonance imaging: a proton relaxation enhancement study of the interaction with human serum albumin
Aime S., Botta M., Fasano M., Crich S.G., Terreno E. Gd(III) complexes as contrast agents for magnetic resonance imaging: a proton relaxation enhancement study of the interaction with human serum albumin. J Biol Inorg Chem 1996, 1:312-319.
Covalent and noncovalent protein binding of drugs: implications for hepatic clearance, storage, and cell-specific drug delivery
Meijer D.K.F., van der Sluijs P. Covalent and noncovalent protein binding of drugs: implications for hepatic clearance, storage, and cell-specific drug delivery. Pharm Res 1989, 6:105-118.
Readily accessible bicyclononynes for bioorthogonal labeling and three-dimensional imaging of living cells
Dommerholt J., Schmidt S., Temming R., Hendriks L.J.A., Rutjes F.P.J.T., van Hest J.C.M., et al. Readily accessible bicyclononynes for bioorthogonal labeling and three-dimensional imaging of living cells. Angew Chem Int Ed 2010, 49:9422-9425.