메뉴 건너뛰기




Volumn 26, Issue 4, 2013, Pages 1421-1427

Tool wear state recognition based on linear chain conditional random field model

Author keywords

Acoustic emission; Conditional random field; Hidden Markov model; Tool wear

Indexed keywords

CONDITIONAL PROBABILITIES; CONDITIONAL RANDOM FIELD; CROSS-VALIDATION METHODS; HIDDEN MARKOV MODEL(HMM); INDUSTRIAL ENVIRONMENTS; PATTERN RECOGNITION METHOD; TOOL CONDITION MONITORING; TOOL WEAR;

EID: 84875220154     PISSN: 09521976     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.engappai.2012.10.015     Document Type: Article
Times cited : (27)

References (26)
  • 1
    • 77249125824 scopus 로고    scopus 로고
    • A review of machining monitoring systems based on artificial intelligence process models
    • J.V. Abellan-Nebot, and F.R. Subirón A review of machining monitoring systems based on artificial intelligence process models Int. J. Adv. Manuf. Tech. 47 2010 237 257
    • (2010) Int. J. Adv. Manuf. Tech. , vol.47 , pp. 237-257
    • Abellan-Nebot, J.V.1    Subirón, F.R.2
  • 2
    • 79961164082 scopus 로고    scopus 로고
    • K-fold cross validation for error rate estimate in support vector machines
    • D. Anguita, A. Ghio, S. Ridella, and D. Sterpi K-fold cross validation for error rate estimate in support vector machines Int. Conf Data Mining - DMIN 2009 291 297
    • (2009) Int. Conf Data Mining - DMIN , pp. 291-297
    • Anguita, D.1    Ghio, A.2    Ridella, S.3    Sterpi, D.4
  • 3
    • 79957439082 scopus 로고    scopus 로고
    • Detection and diagnosis of bearing and cutting tool faults using hidden Markov models
    • T. Boutros, and M. Liang Detection and diagnosis of bearing and cutting tool faults using hidden Markov models Mech. Syst. Signal Process. 25 6 2011 2102 2124
    • (2011) Mech. Syst. Signal Process. , vol.25 , Issue.6 , pp. 2102-2124
    • Boutros, T.1    Liang, M.2
  • 5
    • 34249812683 scopus 로고    scopus 로고
    • Multirate coupled hidden Markov models and their application to machining tool-wear classification
    • O. Cetin, and M. Ostendorf Multirate coupled hidden Markov models and their application to machining tool-wear classification IEEE Trans. Signal Process. 55 6 2007 2885 2896
    • (2007) IEEE Trans. Signal Process. , vol.55 , Issue.6 , pp. 2885-2896
    • Cetin, O.1    Ostendorf, M.2
  • 6
    • 0035400988 scopus 로고    scopus 로고
    • Tool wear condition monitoring in drilling operations using hidden Markov models (HMMs)
    • H.M. Ertunc, K.A. Loparo, and H. Ocak Tool wear condition monitoring in drilling operations using hidden Markov models (HMMs) Int. J. Mach. Tool Manuf. 41 9 2001 1363 1384
    • (2001) Int. J. Mach. Tool Manuf. , vol.41 , Issue.9 , pp. 1363-1384
    • Ertunc, H.M.1    Loparo, K.A.2    Ocak, H.3
  • 7
    • 38049042395 scopus 로고    scopus 로고
    • A neural-fuzzy pattern recognition algorithm based cutting tool condition monitoring procedure
    • August 24-27 Chengdu, China
    • Fu, P.; Hope, A.D.; 2007. A neural-fuzzy pattern recognition algorithm based cutting tool condition monitoring procedure. International Conference on Natural Computation (ISNN). August 24-27, vol. 2, Chengdu, China, pp. 580-584.
    • (2007) International Conference on Natural Computation (ISNN) , vol.2 , pp. 580-584
    • Fu, P.1    Hope, A.D.2
  • 8
    • 0347567526 scopus 로고    scopus 로고
    • Hidden Markov Model based fault diagnosis for stamping processes
    • M. Ge, R. Du, and Y. Xu Hidden Markov Model based fault diagnosis for stamping processes Mech. Syst. Signal Process. 18 2 2004 391 408
    • (2004) Mech. Syst. Signal Process. , vol.18 , Issue.2 , pp. 391-408
    • Ge, M.1    Du, R.2    Xu, Y.3
  • 9
    • 84920546320 scopus 로고    scopus 로고
    • Tool wear estimation using support vector machines in ball-nose end milling
    • October 10-14 Oregon, USA
    • Huang, S.; Li, X.; Gan, O.P.; 2011. Tool wear estimation using support vector machines in ball-nose end milling. Annual Conference of the Prognostics and Health Management Society (PHM). October 10-14, vol. 12, no. (2), Oregon, USA, pp. 86-91.
    • (2011) Annual Conference of the Prognostics and Health Management Society (PHM) , vol.12 , Issue.2 , pp. 86-91
    • Huang, S.1    Li, X.2    Gan, O.P.3
  • 11
    • 33748806817 scopus 로고    scopus 로고
    • Tool condition classification using Hidden Markov Model based on fractal analysis of machined surface textures
    • A.A. Kassim, M. Zhu, and M.A. Mannan Tool condition classification using Hidden Markov Model based on fractal analysis of machined surface textures Mach. Vision Appl. 17 2006 327 336
    • (2006) Mach. Vision Appl. , vol.17 , pp. 327-336
    • Kassim, A.A.1    Zhu, M.2    Mannan, M.A.3
  • 13
    • 77955333099 scopus 로고    scopus 로고
    • Online degradation assessment and adaptive fault detection using modified hidden Markov model
    • S. Lee, L. Li, and J. Ni Online degradation assessment and adaptive fault detection using modified hidden Markov model J. Manuf. Sci. E-T ASME 132 2 2010 1 11
    • (2010) J. Manuf. Sci. E-T ASME , vol.132 , Issue.2 , pp. 1-11
    • Lee, S.1    Li, L.2    Ni, J.3
  • 14
    • 33751525378 scopus 로고    scopus 로고
    • Grinding wheel condition monitoring with hidden Markov model-based clustering methods
    • T.W. Liao, G. Hua, J. Qu, and P.J. Blau Grinding wheel condition monitoring with hidden Markov model-based clustering methods Mach. Sci. Technol. 10 4 2006 511 538
    • (2006) Mach. Sci. Technol. , vol.10 , Issue.4 , pp. 511-538
    • Liao, T.W.1    Hua, G.2    Qu, J.3    Blau, P.J.4
  • 16
    • 33749165125 scopus 로고    scopus 로고
    • A decision fusion algorithm for tool condition monitoring in drilling using Hidden Markov Model (HMM)
    • U. Natarajan, P. Arun, and V.M. Periasamy A decision fusion algorithm for tool condition monitoring in drilling using Hidden Markov Model (HMM) Indian J. Eng. Mater. Sci. 13 2 2006 103 109
    • (2006) Indian J. Eng. Mater. Sci. , vol.13 , Issue.2 , pp. 103-109
    • Natarajan, U.1    Arun, P.2    Periasamy, V.M.3
  • 18
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov models and selected applications in speech recognition
    • L.R. Rabiner A tutorial on hidden Markov models and selected applications in speech recognition Proc. IEEE 77 2 1989 257 286
    • (1989) Proc. IEEE , vol.77 , Issue.2 , pp. 257-286
    • Rabiner, L.R.1
  • 20
    • 33745893539 scopus 로고    scopus 로고
    • Conditional models for contextual human motion recognition
    • C. Sminchisescu, A. Kanaujia, Z. Li, and D. Metaxas Conditional models for contextual human motion recognition IEEE ICCV 2005 1808 1815
    • (2005) IEEE ICCV , pp. 1808-1815
    • Sminchisescu, C.1    Kanaujia, A.2    Li, Z.3    Metaxas, D.4
  • 21
    • 34447291383 scopus 로고    scopus 로고
    • Rich features based conditional random fields for biological named entities recognition
    • C. Sun, Y. Guan, X. Wang, and L. Lin Rich features based conditional random fields for biological named entities recognition Comput. Biol. Med. 37 9 2007 1327 1333
    • (2007) Comput. Biol. Med. , vol.37 , Issue.9 , pp. 1327-1333
    • Sun, C.1    Guan, Y.2    Wang, X.3    Lin, L.4
  • 22
    • 0036700525 scopus 로고    scopus 로고
    • Hidden Markov model-based tool wear monitoring in turning
    • L.T. Wang, M.G. Mehrabi, and E. Kannatey-Asibu Hidden Markov model-based tool wear monitoring in turning J. Manuf. Sci. E-T ASME 124 3 2002 651 658
    • (2002) J. Manuf. Sci. E-T ASME , vol.124 , Issue.3 , pp. 651-658
    • Wang, L.T.1    Mehrabi, M.G.2    Kannatey-Asibu, E.3
  • 23
    • 84867571485 scopus 로고    scopus 로고
    • CHMM for tool condition monitoring and remaining useful life prediction
    • M. Wang, and J. Wang CHMM for tool condition monitoring and remaining useful life prediction Int. J. Adv. Manuf. Tech. 59 5-8 2012 463 471
    • (2012) Int. J. Adv. Manuf. Tech. , vol.59 , Issue.58 , pp. 463-471
    • Wang, M.1    Wang, J.2
  • 24
    • 51849160407 scopus 로고    scopus 로고
    • A comparative study of feature selection for hidden Markov model-based micro-milling tool wear monitoring
    • K.P. Zhu, G.S. Hong, and Y.S. Wong A comparative study of feature selection for hidden Markov model-based micro-milling tool wear monitoring Mach. Sci. Technol. 12 3 2008 348 369
    • (2008) Mach. Sci. Technol. , vol.12 , Issue.3 , pp. 348-369
    • Zhu, K.P.1    Hong, G.S.2    Wong, Y.S.3
  • 25
    • 56249121170 scopus 로고    scopus 로고
    • Multi-category micro-milling tool wear monitoring with continuous hidden Markov models
    • K.P. Zhu, G.S. Hong, and Y.S. Wong Multi-category micro-milling tool wear monitoring with continuous hidden Markov models Mech. Syst. Signal Process. 23 2 2009 547 560
    • (2009) Mech. Syst. Signal Process. , vol.23 , Issue.2 , pp. 547-560
    • Zhu, K.P.1    Hong, G.S.2    Wong, Y.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.