-
1
-
-
31344435149
-
Dichotomizing continuous predictors in multiple regression: A bad idea
-
Royston P, Altman DG, Sauerbrei W. Dichotomizing continuous predictors in multiple regression: a bad idea. Stat Med 2006; 25: 127-41.
-
(2006)
Stat Med
, vol.25
, pp. 127-141
-
-
Royston, P.1
Altman, D.G.2
Sauerbrei, W.3
-
4
-
-
67650045441
-
Prognosis and prognostic research: Developing a prognostic model
-
Royston P, Moons KG, Altman DG, et al. Prognosis and prognostic research: developing a prognostic model. BMJ 2009; 338: b604.
-
(2009)
BMJ
, vol.338
-
-
Royston, P.1
Moons, K.G.2
Altman, D.G.3
-
5
-
-
52049117388
-
Poor quality of reporting confounding bias in observational intervention studies: A systematic review
-
Groenwold RHH, van Deursen AM, Hoes AW, et al. Poor quality of reporting confounding bias in observational intervention studies: a systematic review. Ann Epidemiol 2008;18:746-51.
-
(2008)
Ann Epidemiol
, vol.18
, pp. 746-751
-
-
Groenwold, R.H.H.1
Van Deursen, A.M.2
Hoes, A.W.3
-
6
-
-
0037080407
-
Reporting on statistical methods to adjust for confounding: A cross-sectional survey
-
Müllner M, Matthews H, Altman DG. Reporting on statistical methods to adjust for confounding: a cross-sectional survey. Ann Intern Med 2002;136:122-6.
-
(2002)
Ann Intern Med
, vol.136
, pp. 122-126
-
-
Müllner, M.1
Matthews, H.2
Altman, D.G.3
-
7
-
-
11344295874
-
Using generalized additive models to reduce residual confounding
-
Benedetti A, Abrahamowicz M. Using generalized additive models to reduce residual confounding. Stat Med 2004;23:3781-801.
-
(2004)
Stat Med
, vol.23
, pp. 3781-3801
-
-
Benedetti, A.1
Abrahamowicz, M.2
-
8
-
-
0030968266
-
Controlling for continuous confounders in epidemiologic research
-
Brenner H, Blettner M. Controlling for continuous confounders in epidemiologic research. Epidemiology 1997;8:429-34.
-
(1997)
Epidemiology
, vol.8
, pp. 429-434
-
-
Brenner, H.1
Blettner, M.2
-
9
-
-
0026482612
-
The concept of residual confounding in regression models and some applications
-
Becher H. The concept of residual confounding in regression models and some applications. Stat Med 1992;11:1747-58.
-
(1992)
Stat Med
, vol.11
, pp. 1747-1758
-
-
Becher, H.1
-
10
-
-
84971238662
-
Introduction to regression models
-
Rothman KJ, Greenland S, Lash TL, editors Philadelphia (PA): Lippincott Williams & Wilkins
-
Greenland S. Introduction to regression models. In: Rothman KJ, Greenland S, Lash TL, editors. Modern epidemiology. 3rd ed. Philadelphia (PA): Lippincott Williams & Wilkins; 2008. p. 381-417.
-
(2008)
Modern epidemiology. 3rd ed
, pp. 381-417
-
-
Greenland, S.1
-
11
-
-
25144487077
-
Building multivariable regression models with continuous covariates in clinical epidemiology-With an emphasis on fractional polynomials
-
Royston P, Sauerbrei W. Building multivariable regression models with continuous covariates in clinical epidemiology-with an emphasis on fractional polynomials. Methods Inf Med 2005; 44: 561-71.
-
(2005)
Methods Inf Med
, vol.44
, pp. 561-571
-
-
Royston, P.1
Sauerbrei, W.2
-
13
-
-
33646486740
-
The cost of dichotomising continuous variables
-
Altman DG, Royston P. The cost of dichotomising continuous variables. BMJ 2006;332:1080.
-
(2006)
BMJ
, vol.332
, pp. 1080
-
-
Altman, D.G.1
Royston, P.2
-
14
-
-
69249151711
-
Impact of influenza vaccination on mortality risk among elderly
-
Groenwold RHH, Hoes AW, Hak E. Impact of influenza vaccination on mortality risk among elderly. Eur Respir J 2009; 34: 56-62.
-
(2009)
Eur Respir J
, vol.34
, pp. 56-62
-
-
Groenwold, R.H.H.1
Hoes, A.W.2
Hak, E.3
-
15
-
-
0032750226
-
Second manifestations of arterial disease (smart) study: Rationale and design
-
SMART study Group
-
Simons PCG, Algra A, van de Laak MF, et al.; SMART study Group. Second Manifestations of Arterial disease (SMART) study: rationale and design. Eur J Epidemiol 1999;15:773-81.
-
(1999)
Eur J Epidemiol
, vol.15
, pp. 773-781
-
-
Simons, P.C.G.1
Algra, A.2
Van De Laak, M.F.3
-
16
-
-
84875137285
-
-
R Development Core Team. R: A Language And Environment For Statistical Computing. Vienna (Austria): R Foundation For Statistical Computing
-
R Development Core Team. R: A language and environment for statistical computing. Vienna (Austria): R Foundation for Statistical Computing; 2011.
-
(2011)
-
-
-
17
-
-
0014297593
-
The effectiveness of adjustment by subclassification in removing bias in observational studies
-
Cochran WG. The effectiveness of adjustment by subclassification in removing bias in observational studies. Biometrics 1968; 24: 295-313.
-
(1968)
Biometrics
, vol.24
, pp. 295-313
-
-
Cochran, W.G.1
-
20
-
-
11144249296
-
Methods to assess intended effects of drug treatment in observational studies are reviewed
-
Klungel OH, Martens EP, Psaty BM, et al. Methods to assess intended effects of drug treatment in observational studies are reviewed. J Clin Epidemiol 2004;57:1223-31.
-
(2004)
J Clin Epidemiol
, vol.57
, pp. 1223-1231
-
-
Klungel, O.H.1
Martens, E.P.2
Psaty, B.M.3
-
21
-
-
1842780228
-
Inflation of the type i error rate when a continuous confounding variable is categorized in logistic regression analyses
-
Austin PC, Brunner LJ. Inflation of the type I error rate when a continuous confounding variable is categorized in logistic regression analyses. Stat Med 2004;23:1159-78.
-
(2004)
Stat Med
, vol.23
, pp. 1159-1178
-
-
Austin, P.C.1
Brunner, L.J.2
|