메뉴 건너뛰기




Volumn 14, Issue 1, 2013, Pages 399-436

Ranked bandits in metric spaces: Learning diverse rankings over large document collections

Author keywords

Clickthrough data; Contextual bandits; Diversity; Metric spaces; Multi armed bandits; Online learning; Regret

Indexed keywords

CLICKTHROUGH DATA; CONTEXTUAL BANDITS; DIVERSITY; METRIC SPACES; MULTI ARMED BANDIT; ONLINE LEARNING; REGRET;

EID: 84875138796     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (97)

References (52)
  • 1
    • 84898063697 scopus 로고    scopus 로고
    • Competing in the dark: An efficient algorithm for bandit linear optimization
    • Jacob Abernethy, Elad Hazan, and Alexander Rakhlin. Competing in the dark: An efficient algorithm for bandit linear optimization. In 21th Conf. on Learning Theory (COLT), pages 263-274, 2008.
    • (2008) 21th Conf. on Learning Theory (COLT) , pp. 263-274
    • Abernethy, J.1    Hazan, E.2    Rakhlin, A.3
  • 2
    • 0345224411 scopus 로고
    • The continuum-armed bandit problem
    • Rajeev Agrawal. The continuum-armed bandit problem. SIAM J. Control and Optimization, 33(6):1926-1951, 1995.
    • (1995) SIAM J. Control and Optimization , vol.33 , Issue.6 , pp. 1926-1951
    • Agrawal, R.1
  • 4
    • 0041966002 scopus 로고    scopus 로고
    • Using confidence bounds for exploitation-exploration trade-offs
    • Preliminary version in 41st IEEE FOCS, 2000
    • Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. J. of Machine Learning Research (JMLR), 3:397-422, 2002. Preliminary version in 41st IEEE FOCS, 2000.
    • (2002) J. of Machine Learning Research (JMLR) , vol.3 , pp. 397-422
    • Auer, P.1
  • 5
    • 0036568025 scopus 로고    scopus 로고
    • Finite-time analysis of the multiarmed bandit problem
    • DOI 10.1023/A:1013689704352, Computational Learning Theory
    • Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit problem. Machine Learning, 47(2-3):235-256, 2002a. Preliminary version in 15th ICML, 1998. (Pubitemid 34126111)
    • (2002) Machine Learning , vol.47 , Issue.2-3 , pp. 235-256
    • Auer, P.1    Cesa-Bianchi, N.2    Fischer, P.3
  • 6
    • 0037709910 scopus 로고    scopus 로고
    • The nonstochastic multiarmed bandit problem
    • Preliminary version in 36th IEEE FOCS, 1995
    • Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The nonstochastic multiarmed bandit problem. SIAM J. Comput., 32(1):48-77, 2002b. Preliminary version in 36th IEEE FOCS, 1995.
    • (2002) SIAM J. Comput. , vol.32 , Issue.1 , pp. 48-77
    • Auer, P.1    Cesa-Bianchi, N.2    Freund, Y.3    Schapire, R.E.4
  • 8
    • 35448960376 scopus 로고    scopus 로고
    • Online linear optimization and adaptive routing
    • DOI 10.1016/j.jcss.2007.04.016, PII S0022000007000621, Learning Theory 2004
    • Baruch Awerbuch and Robert Kleinberg. Online linear optimization and adaptive routing. J. of Computer and System Sciences, 74(1):97-114, February 2008. Preliminary version in 36th ACM STOC, 2004. (Pubitemid 47625408)
    • (2008) Journal of Computer and System Sciences , vol.74 , Issue.1 , pp. 97-114
    • Awerbuch, B.1    Kleinberg, R.2
  • 9
    • 84875207263 scopus 로고    scopus 로고
    • Probabilistic approximations of metric spaces and its algorithmic applications
    • Yair Bartal. Probabilistic approximations of metric spaces and its algorithmic applications. In IEEE Symp. on Foundations of Computer Science (FOCS), 1996.
    • (1996) IEEE Symp. on Foundations of Computer Science (FOCS)
    • Bartal, Y.1
  • 10
    • 38049057924 scopus 로고    scopus 로고
    • Bandit problems
    • Steven Durlauf and Larry Blume, editors, 2nd ed. Macmillan Press
    • Dirk Bergemann and Juuso Välimäki. Bandit problems. In Steven Durlauf and Larry Blume, editors, The New Palgrave Dictionary of Economics, 2nd ed. Macmillan Press, 2006.
    • (2006) The New Palgrave Dictionary of Economics
    • Bergemann, D.1    Välimäki, J.2
  • 17
    • 21844453228 scopus 로고    scopus 로고
    • Gaussian processes for ordinal regression
    • Wei Chu and Zoubin Ghahramani. Gaussian processes for ordinal regression. J. of Machine Learning Research, 6:1019-1041, 2005.
    • (2005) J. of Machine Learning Research , vol.6 , pp. 1019-1041
    • Chu, W.1    Ghahramani, Z.2
  • 20
    • 4544291996 scopus 로고    scopus 로고
    • A tight bound on approximating arbitrary metrics by tree metrics
    • Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating arbitrary metrics by tree metrics. J. of Computer and System Sciences, 69(3):485-497, 2004.
    • (2004) J. of Computer and System Sciences , vol.69 , Issue.3 , pp. 485-497
    • Fakcharoenphol, J.1    Rao, S.2    Talwar, K.3
  • 21
    • 20744454447 scopus 로고    scopus 로고
    • Online convex optimization in the bandit setting: Gradient descent without a gradient
    • Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms
    • Abraham Flaxman, Adam Kalai, and H. Brendan McMahan. Online convex optimization in the bandit setting: Gradient descent without a gradient. In 16th ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 385-394, 2005. (Pubitemid 40851394)
    • (2005) Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms , pp. 385-394
    • Flaxman, A.D.1    Kalai, A.T.2    McMahan, H.B.3
  • 33
    • 0002899547 scopus 로고
    • Asymptotically efficient adaptive allocation rules
    • Tze Leung Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules. Advances in Applied Mathematics, 6:4-22, 1985.
    • (1985) Advances in Applied Mathematics , vol.6 , pp. 4-22
    • Lai, T.L.1    Robbins, H.2
  • 45
    • 77956501313 scopus 로고    scopus 로고
    • Gaussian process optimization in the bandit setting: No regret and experimental design
    • Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger. Gaussian process optimization in the bandit setting: No regret and experimental design. In 27th Intl. Conf. on Machine Learning (ICML), pages 1015-1022, 2010.
    • (2010) 27th Intl. Conf. on Machine Learning (ICML) , pp. 1015-1022
    • Srinivas, N.1    Krause, A.2    Kakade, S.3    Seeger, M.4
  • 52
    • 0001631327 scopus 로고
    • A one-armed bandit problem with a concomitant variable
    • Michael Woodroofe. A one-armed bandit problem with a concomitant variable. J. Amer. Statist. Assoc., 74(368), 1979.
    • (1979) J. Amer. Statist. Assoc. , vol.74 , Issue.368
    • Woodroofe, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.