-
1
-
-
84898063697
-
Competing in the dark: An efficient algorithm for bandit linear optimization
-
Jacob Abernethy, Elad Hazan, and Alexander Rakhlin. Competing in the dark: An efficient algorithm for bandit linear optimization. In 21th Conf. on Learning Theory (COLT), pages 263-274, 2008.
-
(2008)
21th Conf. on Learning Theory (COLT)
, pp. 263-274
-
-
Abernethy, J.1
Hazan, E.2
Rakhlin, A.3
-
2
-
-
0345224411
-
The continuum-armed bandit problem
-
Rajeev Agrawal. The continuum-armed bandit problem. SIAM J. Control and Optimization, 33(6):1926-1951, 1995.
-
(1995)
SIAM J. Control and Optimization
, vol.33
, Issue.6
, pp. 1926-1951
-
-
Agrawal, R.1
-
4
-
-
0041966002
-
Using confidence bounds for exploitation-exploration trade-offs
-
Preliminary version in 41st IEEE FOCS, 2000
-
Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. J. of Machine Learning Research (JMLR), 3:397-422, 2002. Preliminary version in 41st IEEE FOCS, 2000.
-
(2002)
J. of Machine Learning Research (JMLR)
, vol.3
, pp. 397-422
-
-
Auer, P.1
-
5
-
-
0036568025
-
Finite-time analysis of the multiarmed bandit problem
-
DOI 10.1023/A:1013689704352, Computational Learning Theory
-
Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit problem. Machine Learning, 47(2-3):235-256, 2002a. Preliminary version in 15th ICML, 1998. (Pubitemid 34126111)
-
(2002)
Machine Learning
, vol.47
, Issue.2-3
, pp. 235-256
-
-
Auer, P.1
Cesa-Bianchi, N.2
Fischer, P.3
-
6
-
-
0037709910
-
The nonstochastic multiarmed bandit problem
-
Preliminary version in 36th IEEE FOCS, 1995
-
Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The nonstochastic multiarmed bandit problem. SIAM J. Comput., 32(1):48-77, 2002b. Preliminary version in 36th IEEE FOCS, 1995.
-
(2002)
SIAM J. Comput.
, vol.32
, Issue.1
, pp. 48-77
-
-
Auer, P.1
Cesa-Bianchi, N.2
Freund, Y.3
Schapire, R.E.4
-
8
-
-
35448960376
-
Online linear optimization and adaptive routing
-
DOI 10.1016/j.jcss.2007.04.016, PII S0022000007000621, Learning Theory 2004
-
Baruch Awerbuch and Robert Kleinberg. Online linear optimization and adaptive routing. J. of Computer and System Sciences, 74(1):97-114, February 2008. Preliminary version in 36th ACM STOC, 2004. (Pubitemid 47625408)
-
(2008)
Journal of Computer and System Sciences
, vol.74
, Issue.1
, pp. 97-114
-
-
Awerbuch, B.1
Kleinberg, R.2
-
9
-
-
84875207263
-
Probabilistic approximations of metric spaces and its algorithmic applications
-
Yair Bartal. Probabilistic approximations of metric spaces and its algorithmic applications. In IEEE Symp. on Foundations of Computer Science (FOCS), 1996.
-
(1996)
IEEE Symp. on Foundations of Computer Science (FOCS)
-
-
Bartal, Y.1
-
10
-
-
38049057924
-
Bandit problems
-
Steven Durlauf and Larry Blume, editors, 2nd ed. Macmillan Press
-
Dirk Bergemann and Juuso Välimäki. Bandit problems. In Steven Durlauf and Larry Blume, editors, The New Palgrave Dictionary of Economics, 2nd ed. Macmillan Press, 2006.
-
(2006)
The New Palgrave Dictionary of Economics
-
-
Bergemann, D.1
Välimäki, J.2
-
13
-
-
84860634388
-
Online optimization in xarmed bandits
-
Preliminary version in NIPS 2008
-
Sébastien Bubeck, Rémi Munos, Gilles Stoltz, and Csaba Szepesvari. Online optimization in xarmed bandits. J. of Machine Learning Research (JMLR), 12:1587-1627, 2011. Preliminary version in NIPS 2008.
-
(2011)
J. of Machine Learning Research (JMLR)
, vol.12
, pp. 1587-1627
-
-
Bubeck, S.1
Munos, R.2
Stoltz, G.3
Szepesvari, C.4
-
14
-
-
31844446958
-
Learning to rank using gradient descent
-
DOI 10.1145/1102351.1102363, ICML 2005 - Proceedings of the 22nd International Conference on Machine Learning
-
Christopher J. C. Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton, and Gregory N. Hullender. Learning to rank using gradient descent. In Intl. Conf. on Machine Learning (ICML), pages 89-96, 2005. (Pubitemid 43183320)
-
(2005)
ICML 2005 - Proceedings of the 22nd International Conference on Machine Learning
, pp. 89-96
-
-
Burges, C.1
Shaked, T.2
Renshaw, E.3
Lazier, A.4
Deeds, M.5
Hamilton, N.6
Hullender, G.7
-
20
-
-
4544291996
-
A tight bound on approximating arbitrary metrics by tree metrics
-
Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating arbitrary metrics by tree metrics. J. of Computer and System Sciences, 69(3):485-497, 2004.
-
(2004)
J. of Computer and System Sciences
, vol.69
, Issue.3
, pp. 485-497
-
-
Fakcharoenphol, J.1
Rao, S.2
Talwar, K.3
-
21
-
-
20744454447
-
Online convex optimization in the bandit setting: Gradient descent without a gradient
-
Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms
-
Abraham Flaxman, Adam Kalai, and H. Brendan McMahan. Online convex optimization in the bandit setting: Gradient descent without a gradient. In 16th ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 385-394, 2005. (Pubitemid 40851394)
-
(2005)
Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms
, pp. 385-394
-
-
Flaxman, A.D.1
Kalai, A.T.2
McMahan, H.B.3
-
23
-
-
0344550482
-
Bounded geometries, fractals, and low-distortion embeddings
-
Anupam Gupta, Robert Krauthgamer, and James R. Lee. Bounded geometries, fractals, and low-distortion embeddings. In IEEE Symp. on Foundations of Computer Science (FOCS), 2003.
-
(2003)
IEEE Symp. on Foundations of Computer Science (FOCS)
-
-
Gupta, A.1
Krauthgamer, R.2
Lee, J.R.3
-
33
-
-
0002899547
-
Asymptotically efficient adaptive allocation rules
-
Tze Leung Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules. Advances in Applied Mathematics, 6:4-22, 1985.
-
(1985)
Advances in Applied Mathematics
, vol.6
, pp. 4-22
-
-
Lai, T.L.1
Robbins, H.2
-
45
-
-
77956501313
-
Gaussian process optimization in the bandit setting: No regret and experimental design
-
Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger. Gaussian process optimization in the bandit setting: No regret and experimental design. In 27th Intl. Conf. on Machine Learning (ICML), pages 1015-1022, 2010.
-
(2010)
27th Intl. Conf. on Machine Learning (ICML)
, pp. 1015-1022
-
-
Srinivas, N.1
Krause, A.2
Kakade, S.3
Seeger, M.4
-
47
-
-
34548750873
-
Generalized bandit problems
-
David Austen-Smith and John Duggan, editors, Springer, First appeared as Working Paper, Stern School of Business
-
Rangarajan K. Sundaram. Generalized bandit problems. In David Austen-Smith and John Duggan, editors, Social Choice and Strategic Decisions: Essays in Honor of Jeffrey S. Banks (Studies in Choice and Welfare), pages 131-162. Springer, 2005. First appeared as Working Paper, Stern School of Business, 2003.
-
(2003)
Social Choice and Strategic Decisions: Essays in Honor of Jeffrey S. Banks (Studies in Choice and Welfare)
, pp. 131-162
-
-
Sundaram, R.K.1
-
48
-
-
42549161120
-
Softrank: Optimizing nonsmooth rank metrics
-
Michael J. Taylor, John Guiver, Stephen Robertson, and Tom Minka. Softrank: Optimizing nonsmooth rank metrics. In ACM Intl. Conf. on Web Search and Data Mining (WSDM), pages 77-86, 2008.
-
(2008)
ACM Intl. Conf. on Web Search and Data Mining (WSDM)
, pp. 77-86
-
-
Taylor, M.J.1
Guiver, J.2
Robertson, S.3
Minka, T.4
-
50
-
-
15844389867
-
Bandit problems with side observations
-
Chih-Chun Wang, Sanjeev R. Kulkarni, and H. Vincent Poor. Bandit problems with side observations. IEEE Trans. on Automatic Control, 50(3):338355, 2005.
-
(2005)
IEEE Trans. on Automatic Control
, vol.50
, Issue.3
, pp. 338355
-
-
Wang, C.-C.1
Kulkarni, S.R.2
Vincent Poor, H.3
-
52
-
-
0001631327
-
A one-armed bandit problem with a concomitant variable
-
Michael Woodroofe. A one-armed bandit problem with a concomitant variable. J. Amer. Statist. Assoc., 74(368), 1979.
-
(1979)
J. Amer. Statist. Assoc.
, vol.74
, Issue.368
-
-
Woodroofe, M.1
|