메뉴 건너뛰기




Volumn , Issue , 2010, Pages

Non-stochastic bandit slate problems

Author keywords

[No Author keywords available]

Indexed keywords

BANDIT PROBLEMS; NON-STOCHASTIC; ONLINE ADVERTIZING; ONLINE NEWS; RELATIVE ENTROPY; SPECIFIC NATURE; UPDATE ALGORITHMS; WEIGHT UPDATE;

EID: 85162455616     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (77)

References (18)
  • 1
    • 84898063697 scopus 로고    scopus 로고
    • Competing in the dark: An efficient algorithm for bandit linear optimization
    • ABERNETHY, J., HAZAN, E., AND RAKHLIN, A. Competing in the dark: An efficient algorithm for bandit linear optimization. In COLT (2008), pp. 263-274.
    • (2008) COLT , pp. 263-274
    • Abernethy, J.1    Hazan, E.2    Rakhlin, A.3
  • 2
    • 0036568025 scopus 로고    scopus 로고
    • Finite-time analysis of the multiarmed bandit problem
    • AUER, P., CESA-BIANCHI, N., AND FISCHER, P. Finite-time analysis of the multiarmed bandit problem. Machine Learning 47, 2-3 (2002), 235-256.
    • (2002) Machine Learning , vol.47 , Issue.2-3 , pp. 235-256
    • Auer, P.1    Cesa-Bianchi, N.2    Fischer, P.3
  • 4
    • 35448960376 scopus 로고    scopus 로고
    • Online linear optimization and adaptive routing
    • AWERBUCH, B., AND KLEINBERG, R. Online linear optimization and adaptive routing. J. Comput. Syst. Sci. 74, 1 (2008), 97-114.
    • (2008) J. Comput. Syst. Sci. , vol.74 , Issue.1 , pp. 97-114
    • Awerbuch, B.1    Kleinberg, R.2
  • 5
    • 80555137396 scopus 로고    scopus 로고
    • High-probability regret bounds for bandit online linear optimization
    • BARTLETT, P. L., DANI, V., HAYES, T. P., KAKADE, S., RAKHLIN, A., AND TEWARI, A. High-probability regret bounds for bandit online linear optimization. In COLT (2008), pp. 335-342.
    • (2008) COLT , pp. 335-342
    • Bartlett, P.L.1    Dani, V.2    Hayes, T.P.3    Kakade, S.4    Rakhlin, A.5    Tewari, A.6
  • 6
    • 49949144765 scopus 로고
    • The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming
    • BREGMAN, L. The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Comp. Mathematics and Mathematical Physics 7 (1967), 200-217.
    • (1967) USSR Comp. Mathematics and Mathematical Physics , vol.7 , pp. 200-217
    • Bregman, L.1
  • 11
    • 70349128132 scopus 로고    scopus 로고
    • Better algorithms for benign bandits
    • HAZAN, E., AND KALE, S. Better algorithms for benign bandits. In SODA (2009), pp. 38-47.
    • (2009) SODA , pp. 38-47
    • Hazan, E.1    Kale, S.2
  • 12
    • 38049002079 scopus 로고    scopus 로고
    • Learning permutations with exponential weights
    • HELMBOLD, D. P., AND WARMUTH, M. K. Learning permutations with exponential weights. In COLT (2007), pp. 469-483.
    • (2007) COLT , pp. 469-483
    • Helmbold, D.P.1    Warmuth, M.K.2
  • 15
  • 17
    • 78249288447 scopus 로고    scopus 로고
    • Algorithms for adversarial bandit problems with multiple plays
    • UCHIYA, T., NAKAMURA, A., AND KUDO, M. Algorithms for adversarial bandit problems with multiple plays. In ALT (2010), pp. 375-389.
    • (2010) ALT , pp. 375-389
    • Uchiya, T.1    Nakamura, A.2    Kudo, M.3
  • 18
    • 34547980767 scopus 로고    scopus 로고
    • Randomized PCA algorithms with regret bounds that are logarithmic in the dimension
    • WARMUTH, M. K., AND KUZMIN, D. Randomized PCA algorithms with regret bounds that are logarithmic in the dimension. In In Proc. of NIPS (2006).
    • (2006) Proc. of NIPS
    • Warmuth, M.K.1    Kuzmin, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.