메뉴 건너뛰기




Volumn , Issue , 2008, Pages 681-690

Multi-armed bandits in metric spaces

Author keywords

Algorithms; Theory

Indexed keywords

ALGORITHMS; PROBABILITY; SET THEORY; STATISTICS; TOPOLOGY;

EID: 57049185311     PISSN: 07378017     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1374376.1374475     Document Type: Conference Paper
Times cited : (396)

References (20)
  • 1
    • 0345224411 scopus 로고
    • The continuum-armed bandit problem
    • R. Agrawal. The continuum-armed bandit problem. SIAM J. Control and Optimization, 33(6): 1926-1951, 1995.
    • (1995) SIAM J. Control and Optimization , vol.33 , Issue.6 , pp. 1926-1951
    • Agrawal, R.1
  • 2
    • 0036568025 scopus 로고    scopus 로고
    • Finite-time analysis of the multiarmed bandit problem
    • P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit problem. Machine Learning, 47(2-3):235-256, 2002.
    • (2002) Machine Learning , vol.47 , Issue.2-3 , pp. 235-256
    • Auer, P.1    Cesa-Bianchi, N.2    Fischer, P.3
  • 5
  • 6
    • 0000768035 scopus 로고
    • Denumerable-armed bandits
    • J. S. Banks and R. K. Sundaram. Denumerable-armed bandits. Econometrica, 60(5):1071-1096, 1992.
    • (1992) Econometrica , vol.60 , Issue.5 , pp. 1071-1096
    • Banks, J.S.1    Sundaram, R.K.2
  • 9
    • 57049145053 scopus 로고    scopus 로고
    • E. Cope. Regret and convergence bounds for immediate-reward reinforcement learning with continuous action spaces, 2004. Unpublished manuscript.
    • E. Cope. Regret and convergence bounds for immediate-reward reinforcement learning with continuous action spaces, 2004. Unpublished manuscript.
  • 10
    • 57049131250 scopus 로고    scopus 로고
    • The Price of Bandit Information for Online Optimization
    • Preprint
    • V. Dani, T. Hayes, and S. M. Kakade. The Price of Bandit Information for Online Optimization. Preprint, 2007.
    • (2007)
    • Dani, V.1    Hayes, T.2    Kakade, S.M.3
  • 11
    • 33244456637 scopus 로고    scopus 로고
    • Robbing the bandit: Less regret in online geometric optimization against an adaptive adversary
    • V. Dani and T. P. Hayes. Robbing the bandit: Less regret in online geometric optimization against an adaptive adversary. In 16th ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 937-943, 2006.
    • (2006) 16th ACM-SIAM Symp. on Discrete Algorithms (SODA) , pp. 937-943
    • Dani, V.1    Hayes, T.P.2
  • 13
    • 57049154285 scopus 로고    scopus 로고
    • J. C. Gittins and D. M. Jones. A dynamic allocation index for the sequential design of experiments. In J. G. et al., editor, Progress in Statistics, pages 241-266. North-Holland, 1974.
    • J. C. Gittins and D. M. Jones. A dynamic allocation index for the sequential design of experiments. In J. G. et al., editor, Progress in Statistics, pages 241-266. North-Holland, 1974.
  • 15
    • 84898981061 scopus 로고    scopus 로고
    • Nearly tight bounds for the continuum-armed bandit problem
    • Full version appeared as Chapters 4-5, 16
    • R. Kleinberg. Nearly tight bounds for the continuum-armed bandit problem. In 18th Advances in Neural Information Processing Systems (NIPS), 2004. Full version appeared as Chapters 4-5 in [16].
    • (2004) 18th Advances in Neural Information Processing Systems (NIPS)
    • Kleinberg, R.1
  • 17
    • 9444257628 scopus 로고    scopus 로고
    • Online geometric optimization in the bandit setting against an adaptive adversary
    • 17th Annual Conference on Learning Theory COLT, of, Springer Verlag
    • H. B. McMahan and A. Blum. Online geometric optimization in the bandit setting against an adaptive adversary. In 17th Annual Conference on Learning Theory (COLT), volume 3120 of LNCS, pages 109-123. Springer Verlag, 2004.
    • (2004) LNCS , vol.3120 , pp. 109-123
    • McMahan, H.B.1    Blum, A.2
  • 18
    • 27944479719 scopus 로고    scopus 로고
    • K. Neammanee. On the constant in the nonuniform version of the Berry-Esseen theorem. Intl. J. of Mathematics and Mathematical Sciences, 2005:12:1951-1967, 2005.
    • K. Neammanee. On the constant in the nonuniform version of the Berry-Esseen theorem. Intl. J. of Mathematics and Mathematical Sciences, 2005:12:1951-1967, 2005.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.