메뉴 건너뛰기




Volumn 108, Issue , 2013, Pages 36-44

A simple and effective algorithm for implementing particle swarm optimization in RBF network's design using input-output fuzzy clustering

Author keywords

Input output fuzzy clustering; Particle swarm optimization; Radial basis function neural networks

Indexed keywords

BASIS FUNCTIONS; CLUSTER CENTERS; CROSS-VALIDATION ANALYSIS; EFFECTIVE ALGORITHMS; INPUT-OUTPUT; LEARNING PROCESS; OPTIMAL ESTIMATIONS; RADIAL BASIS FUNCTION NEURAL NETWORKS;

EID: 84875106462     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2012.11.011     Document Type: Article
Times cited : (22)

References (27)
  • 2
    • 33750739207 scopus 로고    scopus 로고
    • Neural networks with PSO and improved subtractive clustering algorithms
    • Chen J.Y., Qin Z., Training R.B.F. neural networks with PSO and improved subtractive clustering algorithms. Lect. Notes Comput. Sci. 2006, 4233:1148-1155.
    • (2006) Lect. Notes Comput. Sci. , vol.4233 , pp. 1148-1155
    • Chen, J.Y.1    Qin, Z.2    Training, R.B.F.3
  • 4
    • 26844566296 scopus 로고    scopus 로고
    • Adaptive training of radial basis functions networks using particle swarm optimization
    • Ding H., Xiao Y., Yue J. Adaptive training of radial basis functions networks using particle swarm optimization. Lect. Notes Comput. Sci. 2005, 3610:119-128.
    • (2005) Lect. Notes Comput. Sci. , vol.3610 , pp. 119-128
    • Ding, H.1    Xiao, Y.2    Yue, J.3
  • 5
    • 78649622410 scopus 로고    scopus 로고
    • Fast forward RBF network construction based on particle swarm optimization
    • Deng J., Li K., Irwin G.W., Fei M. Fast forward RBF network construction based on particle swarm optimization. Lect. Notes Comput. Sci. 2010, 6329:40-48.
    • (2010) Lect. Notes Comput. Sci. , vol.6329 , pp. 40-48
    • Deng, J.1    Li, K.2    Irwin, G.W.3    Fei, M.4
  • 7
    • 33750375213 scopus 로고    scopus 로고
    • Self-generation RBFNs using evolutional PSO learning
    • Feng H.-M. Self-generation RBFNs using evolutional PSO learning. Neurocomputing 2006, 70:241-251.
    • (2006) Neurocomputing , vol.70 , pp. 241-251
    • Feng, H.-M.1
  • 9
    • 0031274467 scopus 로고    scopus 로고
    • An integrated approach to fuzzy learning vector quantization and fuzzy c-means clustering
    • Karayiannis N.B., Bezdek J.C. An integrated approach to fuzzy learning vector quantization and fuzzy c-means clustering. IEEE Transact. Fuzzy Syst. 1997, 5(4):622-628.
    • (1997) IEEE Transact. Fuzzy Syst. , vol.5 , Issue.4 , pp. 622-628
    • Karayiannis, N.B.1    Bezdek, J.C.2
  • 10
    • 70449528756 scopus 로고    scopus 로고
    • Time series prediction using RBF neural networks with a nonlinear time-varying evolution PSO algorithm
    • Lee C.-M., Ko C.-N. Time series prediction using RBF neural networks with a nonlinear time-varying evolution PSO algorithm. Neurocomputing 2009, 73:449-460.
    • (2009) Neurocomputing , vol.73 , pp. 449-460
    • Lee, C.-M.1    Ko, C.-N.2
  • 11
    • 81855195351 scopus 로고    scopus 로고
    • A hybrid particle swarm optimization and its application in neural networks
    • Leung S.Y.S., Tang Y., Wong W.K. A hybrid particle swarm optimization and its application in neural networks. Expert Syst. Appl. 2012, 39:395-405.
    • (2012) Expert Syst. Appl. , vol.39 , pp. 395-405
    • Leung, S.Y.S.1    Tang, Y.2    Wong, W.K.3
  • 12
    • 77954651045 scopus 로고    scopus 로고
    • Radial basis function neural network based on PSO with mutation operation to solve function approximation problem
    • Liu X. Radial basis function neural network based on PSO with mutation operation to solve function approximation problem. Lect. Notes Comput. Sci. 2010, 6146:92-99.
    • (2010) Lect. Notes Comput. Sci. , vol.6146 , pp. 92-99
    • Liu, X.1
  • 13
    • 35048874685 scopus 로고    scopus 로고
    • Training radial basis function networks with particle swarms
    • Liu Y., Zheng Q., Shi Z., Chen J. Training radial basis function networks with particle swarms. Lect. Notes Comput. Sci. 2004, 3173:317-322.
    • (2004) Lect. Notes Comput. Sci. , vol.3173 , pp. 317-322
    • Liu, Y.1    Zheng, Q.2    Shi, Z.3    Chen, J.4
  • 14
    • 84856745929 scopus 로고    scopus 로고
    • A novel training algorithm for RBF neural network using a hybrid fuzzy clustering approach
    • Niros A.D., Tsekouras G.E. A novel training algorithm for RBF neural network using a hybrid fuzzy clustering approach. Fuzzy Sets Syst. 2012, 193:62-84.
    • (2012) Fuzzy Sets Syst. , vol.193 , pp. 62-84
    • Niros, A.D.1    Tsekouras, G.E.2
  • 15
    • 82655162109 scopus 로고    scopus 로고
    • Design of K-means clustering-based polynomial radial basis function neural networks (pRBF NNs) realized with the aid of particle swarm optimization and differential evolution
    • Oh S.-K., Kim W.-D., Pedrycz W., Joo S.-C. Design of K-means clustering-based polynomial radial basis function neural networks (pRBF NNs) realized with the aid of particle swarm optimization and differential evolution. Neurocomputing 2012, 78:121-132.
    • (2012) Neurocomputing , vol.78 , pp. 121-132
    • Oh, S.-K.1    Kim, W.-D.2    Pedrycz, W.3    Joo, S.-C.4
  • 16
    • 78249255465 scopus 로고    scopus 로고
    • Polynomial-based radial basis function neural networks (P-RBF NNs) realized with the aid of particle swarm optimization
    • Oh S.-K., Kim W.-D., Pedrycz W., Park B.-J. Polynomial-based radial basis function neural networks (P-RBF NNs) realized with the aid of particle swarm optimization. Fuzzy Sets Syst. 2011, 163:54-77.
    • (2011) Fuzzy Sets Syst. , vol.163 , pp. 54-77
    • Oh, S.-K.1    Kim, W.-D.2    Pedrycz, W.3    Park, B.-J.4
  • 17
    • 0030198511 scopus 로고    scopus 로고
    • Sequential competitive learning and the fuzzy c-means clustering algorithm
    • Pal N.R., Bezdek J.C., Hathaway R.J. Sequential competitive learning and the fuzzy c-means clustering algorithm. Neural Networks 1996, 9(5):787-796.
    • (1996) Neural Networks , vol.9 , Issue.5 , pp. 787-796
    • Pal, N.R.1    Bezdek, J.C.2    Hathaway, R.J.3
  • 18
    • 70350272885 scopus 로고    scopus 로고
    • Granular neural networks and their development through context-based clustering and adjustable dimensionality of receptive fields
    • Park H.S., Pedrycz W., Oh S.K. Granular neural networks and their development through context-based clustering and adjustable dimensionality of receptive fields. IEEE Trans. Neural Networks 2009, 20(10):1604-1616.
    • (2009) IEEE Trans. Neural Networks , vol.20 , Issue.10 , pp. 1604-1616
    • Park, H.S.1    Pedrycz, W.2    Oh, S.K.3
  • 19
    • 0032122726 scopus 로고    scopus 로고
    • Conditional Fuzzy Clustering in the Design of Radial Basis Function Neural Networks
    • Pedrycz W. Conditional Fuzzy Clustering in the Design of Radial Basis Function Neural Networks. IEEE Trans. Neural Networks 1998, 9(4):601-612.
    • (1998) IEEE Trans. Neural Networks , vol.9 , Issue.4 , pp. 601-612
    • Pedrycz, W.1
  • 20
    • 55949110248 scopus 로고    scopus 로고
    • A granular-oriented development of functional radial basis function neural networks
    • Pedrycz W., Park H.S., Oh S.K. A granular-oriented development of functional radial basis function neural networks. Neurocomputing 2008, 72:420-435.
    • (2008) Neurocomputing , vol.72 , pp. 420-435
    • Pedrycz, W.1    Park, H.S.2    Oh, S.K.3
  • 22
    • 77957907005 scopus 로고    scopus 로고
    • Radial basis function network based on time variant multi-objective particle swarm optimization for medical diseases diagnosis
    • Qasem S.N., Shamsuddin S.M. Radial basis function network based on time variant multi-objective particle swarm optimization for medical diseases diagnosis. Appl. Soft Comput. 2011, 11:1427-1438.
    • (2011) Appl. Soft Comput. , vol.11 , pp. 1427-1438
    • Qasem, S.N.1    Shamsuddin, S.M.2
  • 23
    • 77955332145 scopus 로고    scopus 로고
    • The development of fuzzy radial basis function neural networks based on the concept of information ambiguity
    • Roh S.-B., Joo S.-C., Pedrycz W., Oh S.-K. The development of fuzzy radial basis function neural networks based on the concept of information ambiguity. Neurocomputing 2010, 73:2464-2477.
    • (2010) Neurocomputing , vol.73 , pp. 2464-2477
    • Roh, S.-B.1    Joo, S.-C.2    Pedrycz, W.3    Oh, S.-K.4
  • 24
    • 0001625076 scopus 로고
    • Algorithms for better representation and faster learning in radial basis function networks
    • D.S. Touretzky (Ed.)
    • Saha A., Keeler J.D. Algorithms for better representation and faster learning in radial basis function networks. Advances in Neural Information Processing Systems 1989, 482-489. D.S. Touretzky (Ed.).
    • (1989) Advances in Neural Information Processing Systems , pp. 482-489
    • Saha, A.1    Keeler, J.D.2
  • 25
    • 77954439734 scopus 로고    scopus 로고
    • RBF neural network based on particle swarm optimization
    • Shao Y., Chen Q., Jiang H. RBF neural network based on particle swarm optimization. Lect. Notes Comput. Sci. 2010, 6063:169-176.
    • (2010) Lect. Notes Comput. Sci. , vol.6063 , pp. 169-176
    • Shao, Y.1    Chen, Q.2    Jiang, H.3
  • 26
    • 33745203522 scopus 로고    scopus 로고
    • Improving RBF networks performance in regression tasks by means of a supervised fuzzy clustering
    • Staiano A., Tagliaferri R., Pedrycz W. Improving RBF networks performance in regression tasks by means of a supervised fuzzy clustering. Neurocomputing 2006, 69:1570-1581.
    • (2006) Neurocomputing , vol.69 , pp. 1570-1581
    • Staiano, A.1    Tagliaferri, R.2    Pedrycz, W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.