-
1
-
-
0347693398
-
The aerodynamics of insect flight
-
10.1242/jeb.00663
-
Sane S.P. The aerodynamics of insect flight. J. Exp. Biol. 2003, 206:4191-4208. 10.1242/jeb.00663
-
(2003)
J. Exp. Biol.
, vol.206
, pp. 4191-4208
-
-
Sane, S.P.1
-
2
-
-
11144288062
-
Dissecting insect flight
-
10.1146/annurev.fluid.36.050802.121940
-
Wang Z.J. Dissecting insect flight. Annu. Rev. Fluid Mech. 2005, 37:183-210. 10.1146/annurev.fluid.36.050802.121940
-
(2005)
Annu. Rev. Fluid Mech.
, vol.37
, pp. 183-210
-
-
Wang, Z.J.1
-
3
-
-
1842789184
-
The mechanisms of lift enhancement in insect flight
-
10.1007/s00114-004-0502-3
-
Lehmann F.-O. The mechanisms of lift enhancement in insect flight. Naturwiss. 2004, 91:101-122. 10.1007/s00114-004-0502-3
-
(2004)
Naturwiss.
, vol.91
, pp. 101-122
-
-
Lehmann, F.-O.1
-
4
-
-
0035583309
-
Is a two-dimensional butterfly able to fly by symmetric flapping
-
10.1143/JPSJ.70.5
-
Iima M. Yanagita T. Is a two-dimensional butterfly able to fly by symmetric flapping. J. Phys. Soc. Jpn. 2001, 70:5-8. 10.1143/JPSJ.70.5
-
(2001)
J. Phys. Soc. Jpn.
, vol.70
, pp. 5-8
-
-
Iima, M.1
Yanagita, T.2
-
5
-
-
2442651249
-
Symmetry breaking leads to forward flapping flight
-
10.1017/S0022112004008468
-
Vandenberghe N. Zhang J. Childress S. Symmetry breaking leads to forward flapping flight. J. Fluid Mech. 2004, 506:147-155. 10.1017/S0022112004008468
-
(2004)
J. Fluid Mech.
, vol.506
, pp. 147-155
-
-
Vandenberghe, N.1
Zhang, J.2
Childress, S.3
-
6
-
-
77950435019
-
Fruit flies modulate passive wing pitching to generate in-flight turns
-
10.1103/PhysRevLett.104.148101
-
Bergou A.J. Ristroph L. Guckenheimer J. Cohen I. Wang Z.J. Fruit flies modulate passive wing pitching to generate in-flight turns. Phys. Rev. Lett. 2010, 104:148101. 10.1103/PhysRevLett.104.148101
-
(2010)
Phys. Rev. Lett.
, vol.104
, pp. 148101
-
-
Bergou, A.J.1
Ristroph, L.2
Guckenheimer, J.3
Cohen, I.4
Wang, Z.J.5
-
8
-
-
67349172655
-
Wake patterns of the wings and tail of hovering hummingbirds
-
10.1007/s00348-008-0602-5
-
Altshuler D. Princevac M. Pan H. Lozano J. Wake patterns of the wings and tail of hovering hummingbirds. Exp. Fluids 2009, 46:835-846. 10.1007/s00348-008-0602-5
-
(2009)
Exp. Fluids
, vol.46
, pp. 835-846
-
-
Altshuler, D.1
Princevac, M.2
Pan, H.3
Lozano, J.4
-
10
-
-
33749555560
-
Wake topology and hydrodynamic performance of low-aspect-ratio flapping foils
-
10.1017/S002211200600190X
-
Dong H. Mittal R. Najjar F.M. Wake topology and hydrodynamic performance of low-aspect-ratio flapping foils. J. Fluid Mech. 2006, 566:309-343. 10.1017/S002211200600190X
-
(2006)
J. Fluid Mech.
, vol.566
, pp. 309-343
-
-
Dong, H.1
Mittal, R.2
Najjar, F.M.3
-
11
-
-
0002256957
-
Vortex formation in the tethered flight of the peacock butterfly Inachis io L. (Lepidoptera, Nymphalidae) and some aspects of insect flight evolution
-
Brodsky A.K. Vortex formation in the tethered flight of the peacock butterfly Inachis io L. (Lepidoptera, Nymphalidae) and some aspects of insect flight evolution. J. Exp. Biol. 1991, 161:77-95.
-
(1991)
J. Exp. Biol.
, vol.161
, pp. 77-95
-
-
Brodsky, A.K.1
-
12
-
-
39049112589
-
Near- and far-field aerodynamics in insect hovering flight: An integrated computational study
-
10.1242/jeb.008649
-
Aono H. Liang F. Liu H. Near- and far-field aerodynamics in insect hovering flight: An integrated computational study. J. Exp. Biol. 2008, 211:239-257. 10.1242/jeb.008649
-
(2008)
J. Exp. Biol.
, vol.211
, pp. 239-257
-
-
Aono, H.1
Liang, F.2
Liu, H.3
-
13
-
-
0036327133
-
A three-dimensional computational study of the aerodynamic mechanisms of insect flight
-
Ramamurti R. Sandberg W.C. A three-dimensional computational study of the aerodynamic mechanisms of insect flight. J. Exp. Biol. 2002, 205:1507-1518.
-
(2002)
J. Exp. Biol.
, vol.205
, pp. 1507-1518
-
-
Ramamurti, R.1
Sandberg, W.C.2
-
14
-
-
0030248873
-
The wake dynamics and flight forces of the fruit fly Drosophila melanogaster
-
Dickinson M.H. Götz K.G. The wake dynamics and flight forces of the fruit fly Drosophila melanogaster. J. Exp. Biol. 1996, 199:2085-2104.
-
(1996)
J. Exp. Biol.
, vol.199
, pp. 2085-2104
-
-
Dickinson, M.H.1
Götz, K.G.2
-
16
-
-
0037069660
-
Unconventional lift-generating mechanisms in free-flying butterflies
-
10.1038/nature01223
-
Srygley R.B. Thomas A.L. R. Unconventional lift-generating mechanisms in free-flying butterflies. Nature (London) 2002, 420:660-664. 10.1038/nature01223
-
(2002)
Nature (London)
, vol.420
, pp. 660-664
-
-
Srygley, R.B.1
Thomas, A.L.R.2
-
17
-
-
77957139142
-
Stroke-averaged lift forces due to vortex rings and their mutual interactions for a flapping flight model
-
10.1017/S0022112010000613
-
Wang X.X. Wu Z.N. Stroke-averaged lift forces due to vortex rings and their mutual interactions for a flapping flight model. J. Fluid Mech. 2010, 654:453-472. 10.1017/S0022112010000613
-
(2010)
J. Fluid Mech.
, vol.654
, pp. 453-472
-
-
Wang, X.X.1
Wu, Z.N.2
-
18
-
-
1942476846
-
Unsteady aerodynamic forces of a flapping wing
-
10.1242/jeb.00868
-
Wu J.H. Sun M. Unsteady aerodynamic forces of a flapping wing. J. Exp. Biol. 2004, 207:1137-1150. 10.1242/jeb.00868
-
(2004)
J. Exp. Biol.
, vol.207
, pp. 1137-1150
-
-
Wu, J.H.1
Sun, M.2
-
19
-
-
62149090236
-
Experimental and numerical study of forward flight aerodynamics of insect flapping wing
-
10.2514/1.39462
-
Nagai H. Isogai K. Fujimoto T. Hayase T. Experimental and numerical study of forward flight aerodynamics of insect flapping wing. AIAA J. 2009, 47:730-742. 10.2514/1.39462
-
(2009)
AIAA J.
, vol.47
, pp. 730-742
-
-
Nagai, H.1
Isogai, K.2
Fujimoto, T.3
Hayase, T.4
-
20
-
-
76149110099
-
Aerodynamic damping during rapid flight maneuvers in the fruit fly Drosophila
-
10.1242/jeb.038778
-
Cheng B. Fry S.N. Huang Q. Deng X. Aerodynamic damping during rapid flight maneuvers in the fruit fly Drosophila. J. Exp. Biol. 2010, 213:602-612. 10.1242/jeb.038778
-
(2010)
J. Exp. Biol.
, vol.213
, pp. 602-612
-
-
Cheng, B.1
Fry, S.N.2
Huang, Q.3
Deng, X.4
-
22
-
-
70349157158
-
Flapping wing flight can save aerodynamic power compared to steady flight
-
10.1103/PhysRevLett.103.118102
-
Pesavento U. Wang Z.J. Flapping wing flight can save aerodynamic power compared to steady flight. Phys. Rev. Lett. 2009, 103:118102. 10.1103/PhysRevLett.103.118102
-
(2009)
Phys. Rev. Lett.
, vol.103
, pp. 118102
-
-
Pesavento, U.1
Wang, Z.J.2
-
23
-
-
0033928252
-
Vortex shedding and frequency selection in flapping flight
-
10.1017/S0022112099008071
-
Wang Z.J. Vortex shedding and frequency selection in flapping flight. J. Fluid Mech. 2000, 410:323-341. 10.1017/S0022112099008071
-
(2000)
J. Fluid Mech.
, vol.410
, pp. 323-341
-
-
Wang, Z.J.1
-
24
-
-
79959197146
-
Optimal frequency for flow energy harvesting of a flapping foil
-
10.1017/S0022112011000334
-
Zhu Q. Optimal frequency for flow energy harvesting of a flapping foil. J. Fluid Mech. 2011, 675:495-517. 10.1017/S0022112011000334
-
(2011)
J. Fluid Mech.
, vol.675
, pp. 495-517
-
-
Zhu, Q.1
-
25
-
-
33846990855
-
Antennal mechanosensors mediate flight control in moths
-
10.1126/science.1133598
-
Sane S.P. Dieudonné A. Willis M.A. Daniel T.L. Antennal mechanosensors mediate flight control in moths. Science 2007, 315:863. 10.1126/science.1133598
-
(2007)
Science
, vol.315
, pp. 863
-
-
Sane, S.P.1
Dieudonné, A.2
Willis, M.A.3
Daniel, T.L.4
-
26
-
-
0000878056
-
Honeybee navigation en route to the goal: visual flight control and odometry
-
Srinivasan M. Zhang S. Lehrer M. Collett T. Honeybee navigation en route to the goal: visual flight control and odometry. J. Exp. Biol. 1996, 199:237-244.
-
(1996)
J. Exp. Biol.
, vol.199
, pp. 237-244
-
-
Srinivasan, M.1
Zhang, S.2
Lehrer, M.3
Collett, T.4
-
28
-
-
33749166739
-
Flight control in the hawkmoth Manduca sexta: The inverse problem of hovering
-
10.1242/jeb.02363
-
Hedrick T.L. Daniel T.L. Flight control in the hawkmoth Manduca sexta: The inverse problem of hovering. J. Exp. Biol. 2006, 209:3114-3130. 10.1242/jeb.02363
-
(2006)
J. Exp. Biol.
, vol.209
, pp. 3114-3130
-
-
Hedrick, T.L.1
Daniel, T.L.2
-
29
-
-
33747598485
-
Flapping flight for biomimetic robotic insects: Part II-flight control design
-
10.1109/TRO.2006.875483
-
Deng X. Schenato L. Sastry S.S. Flapping flight for biomimetic robotic insects: Part II-flight control design. IEEE Trans. Rob. 2006, 22:789-803. 10.1109/TRO.2006.875483
-
(2006)
IEEE Trans. Rob.
, vol.22
, pp. 789-803
-
-
Deng, X.1
Schenato, L.2
Sastry, S.S.3
-
30
-
-
77952947245
-
Forward flight of swallowtail butterfly with simple flapping motion
-
10.1088/1748-3182/5/2/026003
-
Tanaka H. Shimoyama I. Forward flight of swallowtail butterfly with simple flapping motion. Bioinsp. Biomim. 2010, 5:026003. 10.1088/1748-3182/5/2/026003
-
(2010)
Bioinsp. Biomim.
, vol.5
, pp. 026003
-
-
Tanaka, H.1
Shimoyama, I.2
-
31
-
-
14544293952
-
Immersed boundary methods
-
10.1146/annurev.fluid.37.061903.175743
-
Mittal R. Iaccarino G. Immersed boundary methods. Annu. Rev. Fluid Mech. 2005, 37:239-261. 10.1146/annurev.fluid.37.061903.175743
-
(2005)
Annu. Rev. Fluid Mech.
, vol.37
, pp. 239-261
-
-
Mittal, R.1
Iaccarino, G.2
-
32
-
-
69049089641
-
A smoothing technique for discrete delta functions with application to immersed boundary method in moving boundary simulations
-
10.1016/j.jcp.2009.07.023
-
Yang X. Zhang X. Li Z. He G.-W. A smoothing technique for discrete delta functions with application to immersed boundary method in moving boundary simulations. J. Comput. Phys. 2009, 228:7821-7836. 10.1016/j.jcp.2009.07.023
-
(2009)
J. Comput. Phys.
, vol.228
, pp. 7821-7836
-
-
Yang, X.1
Zhang, X.2
Li, Z.3
He, G.-W.4
-
33
-
-
84856607078
-
Modeling for structural flexibility of wings in flapping butterfly
-
T. Znati, Z. Bar-Joseph, L. Rothrock, in edited by and (ACTA Press, Calgary).
-
Senda K. Yokoyama N. Yokoi K. Kitamura M. Modeling for structural flexibility of wings in flapping butterfly. Computational Intelligence and Bioinformatics/755: Modelling, Identification Simulation 2011, T. Znati, Z. Bar-Joseph, L. Rothrock in edited by and (ACTA Press, Calgary).
-
(2011)
Computational Intelligence and Bioinformatics/755: Modelling, Identification Simulation
-
-
Senda, K.1
Yokoyama, N.2
Yokoi, K.3
Kitamura, M.4
-
34
-
-
84874684093
-
-
The flapping motion and the lead-lag motion are normally defined as the wing motions normal to and parallel to the long axis of the thorax, respectively. The feathering motion is also defined as the variation of the pitching angle of the wing. Thus, the often-used flapping, lead-lagfeathering angles are ill-defined to construct the three-dimensional motion of the wing.
-
The flapping motion and the lead-lag motion are normally defined as the wing motions normal to and parallel to the long axis of the thorax, respectively. The feathering motion is also defined as the variation of the pitching angle of the wing. Thus, the often-used flapping, lead-lagfeathering angles are ill-defined to construct the three-dimensional motion of the wing.
-
-
-
-
35
-
-
84858452215
-
Modeling and emergence of flapping flight of butterfly based on experimental measurements
-
10.1016/j.robot.2011.12.007
-
Senda K. Obara T. Kitamura M. Nishikata T. Hirai N. Iima M. Yokoyama N. Modeling and emergence of flapping flight of butterfly based on experimental measurements. Robot. Auton. Syst. 2012, 60:670-678. 10.1016/j.robot.2011.12.007
-
(2012)
Robot. Auton. Syst.
, vol.60
, pp. 670-678
-
-
Senda, K.1
Obara, T.2
Kitamura, M.3
Nishikata, T.4
Hirai, N.5
Iima, M.6
Yokoyama, N.7
-
36
-
-
84861354477
-
Effects of structural flexibility of wings in flapping flight of butterfly
-
10.1088/1748-3182/7/2/025002
-
Senda K. Obara T. Kitamura M. Yokoyama N. Hirai N. Iima M. Effects of structural flexibility of wings in flapping flight of butterfly. Bioinspir. Biomim. 2012, 7:025002. 10.1088/1748-3182/7/2/025002
-
(2012)
Bioinspir. Biomim.
, vol.7
, pp. 025002
-
-
Senda, K.1
Obara, T.2
Kitamura, M.3
Yokoyama, N.4
Hirai, N.5
Iima, M.6
-
37
-
-
79960893010
-
Effect of internal mass in the simulation of a moving body by the immersed boundary method
-
10.1016/j.compfluid.2011.05.011
-
Suzuki K. Inamuro T. Effect of internal mass in the simulation of a moving body by the immersed boundary method. Comput. Fluids 2011, 49:173-187. 10.1016/j.compfluid.2011.05.011
-
(2011)
Comput. Fluids
, vol.49
, pp. 173-187
-
-
Suzuki, K.1
Inamuro, T.2
-
38
-
-
3543060712
-
The internal anatomy of the monarch butterfly, Danaus plexippus L.
-
Ehrlich P.R. Davidson S.E. The internal anatomy of the monarch butterfly, Danaus plexippus L. Microentomology 1961, 24:85-133.
-
(1961)
Microentomology
, vol.24
, pp. 85-133
-
-
Ehrlich, P.R.1
Davidson, S.E.2
-
39
-
-
0004213706
-
Eddies, streamconvergence zones in turbulent flows
-
Center for Turbulence Research Report CTR-S88
-
Hunt J.C. R. Wray A. Moin P. Eddies, streamconvergence zones in turbulent flows. 1988, 193. and Center for Turbulence Research Report CTR-S88 p.
-
(1988)
, pp. 193
-
-
Hunt, J.C.R.1
Wray, A.2
Moin, P.3
-
40
-
-
84874730426
-
-
See supplementary material at E-PHFLE6-25-026302 for movies.
-
See supplementary material at E-PHFLE6-25-026302 for movies.
-
-
-
-
41
-
-
0000213584
-
A numerical study of insect flight
-
10.1006/jcph.1998.6019
-
Liu H. Kawachi K. A numerical study of insect flight. J. Comput. Phys. 1998, 146:124-156. 10.1006/jcph.1998.6019
-
(1998)
J. Comput. Phys.
, vol.146
, pp. 124-156
-
-
Liu, H.1
Kawachi, K.2
-
42
-
-
0000286943
-
Vortex breakdown
-
10.1146/annurev.fl.04.010172.001211
-
Hall M.G. Vortex breakdown. Annu. Rev. Fluid Mech. 1972, 4:195-218. 10.1146/annurev.fl.04.010172.001211
-
(1972)
Annu. Rev. Fluid Mech.
, vol.4
, pp. 195-218
-
-
Hall, M.G.1
-
43
-
-
70349304399
-
Details of insect wing design and deformation enhance aerodynamic function and flight efficiency
-
10.1126/science.1175928
-
Young J. Walker S.M. Bomphrey R.J. Taylor G.K. Thomas A.L. R. Details of insect wing design and deformation enhance aerodynamic function and flight efficiency. Science 2009, 325:1549-1552. 10.1126/science.1175928
-
(2009)
Science
, vol.325
, pp. 1549-1552
-
-
Young, J.1
Walker, S.M.2
Bomphrey, R.J.3
Taylor, G.K.4
Thomas, A.L.R.5
-
44
-
-
84862964639
-
Aerodynamic performance of a hovering hawkmoth with flexible wings: A computational approach
-
10.1098/rspb.2011.1023
-
Nakata T. Liu H. Aerodynamic performance of a hovering hawkmoth with flexible wings: A computational approach. Proc. R. Soc. London, Ser. B 2012, 279:722-731. 10.1098/rspb.2011.1023
-
(2012)
Proc. R. Soc. London, Ser. B
, vol.279
, pp. 722-731
-
-
Nakata, T.1
Liu, H.2
-
45
-
-
79959545018
-
Dual leading-edge vortex structure for flow over a simplified butterfly model
-
10.1007/s00348-010-0990-1
-
Hu Y. Wang J.J. Dual leading-edge vortex structure for flow over a simplified butterfly model. Exp. Fluids 2011, 50:1285-1292. 10.1007/s00348-010-0990-1
-
(2011)
Exp. Fluids
, vol.50
, pp. 1285-1292
-
-
Hu, Y.1
Wang, J.J.2
|