메뉴 건너뛰기




Volumn , Issue , 2012, Pages 708-715

Ontology-based temporal relation modeling with map-reduce latent dirichlet allocations for big EHR data

Author keywords

event coreference resolution; latent Dirichlet allocations; MapReduce; temporal relation annotation

Indexed keywords

AUTOMATIC ANNOTATION; BIG DATUM; BIG SIZES; CLINICAL NOTES; CO-REFERENCE RESOLUTIONS; DATA SPARSENESS; ELECTRONIC HEALTH RECORD; HIGH DIMENSIONALITY; LATENT DIRICHLET ALLOCATION; LATENT DIRICHLET ALLOCATIONS; MAP-REDUCE; MAPREDUCE FRAMEWORKS; NON-PARAMETRIC BAYESIAN; ONTOLOGY-BASED; SEQUENTIAL MODELING; SIDE INFORMATION; TEMPORAL RELATION; TIME EVENT; TIME-STAMP; TOPIC MODELING; VARIATIONAL METHODS;

EID: 84874602478     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CGC.2012.112     Document Type: Conference Paper
Times cited : (1)

References (26)
  • 2
    • 15944417159 scopus 로고    scopus 로고
    • Examining the recent climate through the lens of ecology: Inferences from temporal pattern analysis
    • P. Hessburg, E. Kuhlmann, and T. Swetnam, "Examining the recent climate through the lens of ecology: inferences from temporal pattern analysis," Ecological Applications, vol. 15, no. 2, pp. 440-457, 2005. (Pubitemid 40441288)
    • (2005) Ecological Applications , vol.15 , Issue.2 , pp. 440-457
    • Hessburg, P.F.1    Kuhlmann, E.E.2    Swetnam, T.W.3
  • 3
    • 0032207527 scopus 로고    scopus 로고
    • Comparative study of stock trend prediction using time delay, recurrent and probabilistic neural networks
    • PII S1045922798073536
    • E. Saad, D. Prokhorov, D. Wunsch et al., "Comparative study of stock trend prediction using time delay, recurrent and probabilistic neural networks," Neural Networks, IEEE Transactions on, vol. 9, no. 6, pp. 1456-1470, 1998. (Pubitemid 128742422)
    • (1998) IEEE Transactions on Neural Networks , vol.9 , Issue.6 , pp. 1456-1470
    • Saad, E.W.1    Prokhorov, D.V.2    Wunsch II, D.C.3
  • 4
    • 34548709663 scopus 로고    scopus 로고
    • MiniTUBA: Medical inference by network integration of temporal data using Bayesian analysis
    • DOI 10.1093/bioinformatics/btm372
    • Z. Xiang, R. Minter, X. Bi, P. Woolf, and Y. He, "minituba: medical inference by network integration of temporal data using bayesian analysis," Bioinformatics, vol. 23, no. 18, pp. 2423-2432, 2007. (Pubitemid 47423840)
    • (2007) Bioinformatics , vol.23 , Issue.18 , pp. 2423-2432
    • Xiang, Z.1    Minter, R.M.2    Bi, X.3    Woolf, P.J.4    He, Y.5
  • 6
    • 0036785984 scopus 로고    scopus 로고
    • Temporal pattern analysis and its applicability in sport: An explanation and exemplar data
    • A. Borrie, G. Jonsson, and M. Magnusson, "Temporal pattern analysis and its applicability in sport: an explanation and exemplar data," Journal of Sports Sciences, vol. 20, no. 10, pp. 845-852, 2002.
    • (2002) Journal of Sports Sciences , vol.20 , Issue.10 , pp. 845-852
    • Borrie, A.1    Jonsson, G.2    Magnusson, M.3
  • 8
    • 84874209919 scopus 로고    scopus 로고
    • Application of a temporal reasoning framework tool in analysis of medical device adverse events
    • American Medical Informatics Association
    • K. Clark, D. Sharma, C. Chute, and C. Tao, "Application of a temporal reasoning framework tool in analysis of medical device adverse events," in AMIA Annual Symposium Proceedings, vol. 2011. American Medical Informatics Association, 2011, p. 1366.
    • (2011) AMIA Annual Symposium Proceedings , vol.2011 , pp. 1366
    • Clark, K.1    Sharma, D.2    Chute, C.3    Tao, C.4
  • 15
    • 80053359574 scopus 로고    scopus 로고
    • Improving word sense disambiguation using topic features
    • J. Cai, W. Lee, and Y. Teh, "Improving word sense disambiguation using topic features," in Proc. of EMNLP, 2007.
    • Proc. of EMNLP, 2007
    • Cai, J.1    Lee, W.2    Teh, Y.3
  • 16
    • 29244455873 scopus 로고    scopus 로고
    • Semi-supervised sequence modeling with syntactic topic models
    • Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press
    • W. Li and A. McCallum, "Semi-supervised sequence modeling with syntactic topic models," in PROCEEDINGS OF THE NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, vol. 20, no. 2. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2005, p. 813.
    • (1999) Proceedings of the National Conference on Artificial Intelligence , vol.20 , Issue.2 , pp. 813
    • Li, W.1    McCallum, A.2
  • 17
  • 21
    • 84874583701 scopus 로고    scopus 로고
    • A combination of topic models with max-margin learning for relation detection
    • D. Li, S. Somasundaran, and A. Chakraborty, "A combination of topic models with max-margin learning for relation detection," ACL HLT 2011, p. 1, 2011.
    • (2011) ACL HLT 2011 , pp. 1
    • Li, D.1    Somasundaran, S.2    Chakraborty, A.3
  • 22
    • 84858966026 scopus 로고    scopus 로고
    • Erdmedlda: Entity relation detection using supervised topic models with maximum margin learning
    • D. Li, S. Somasundaran, and A. Charkraborty, "Erdmedlda: Entity relation detection using supervised topic models with maximum margin learning," Natural Language Engineering, vol. 18, no. 2, p. 263, 2012.
    • (2012) Natural Language Engineering , vol.18 , Issue.2 , pp. 263
    • Li, D.1    Somasundaran, S.2    Charkraborty, A.3
  • 23
    • 84874590822 scopus 로고    scopus 로고
    • MedLDA: A General Framework of Maximum Margin Supervised Topic Models
    • J. Zhu, A. Ahmed, and E. Xing, "MedLDA: A General Framework of Maximum Margin Supervised Topic Models," stat, vol. 1050, p. 30, 2009.
    • (2009) Stat , vol.1050 , pp. 30
    • Zhu, J.1    Ahmed, A.2    Xing, E.3
  • 25
    • 0033225865 scopus 로고    scopus 로고
    • Introduction to variational methods for graphical models
    • DOI 10.1023/A:1007665907178
    • M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul, "An introduction to variational methods for graphical models," Machine learning, vol. 37, no. 2, pp. 183-233, 1999. (Pubitemid 30544678)
    • (1999) Machine Learning , vol.37 , Issue.2 , pp. 183-233
    • Jordan, M.I.1    Ghahramani, Z.2    Jaakkola, T.S.3    Saul, L.K.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.