메뉴 건너뛰기




Volumn , Issue , 2011, Pages 1-9

A combination of topic models with max-margin learning for relation detection

Author keywords

[No Author keywords available]

Indexed keywords

F-MEASURE; HETEROGENEOUS FEATURES; LATENT DIRICHLET ALLOCATION; NOVEL APPLICATIONS; TOPIC MODEL; TOPIC MODELING;

EID: 84874583701     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (8)

References (30)
  • 3
    • 80053262847 scopus 로고    scopus 로고
    • A shortest path dependency kernel for relation extraction
    • R.C. Bunescu and R.J. Mooney. 2005. A shortest path dependency kernel for relation extraction. In HLT & EMNLP.
    • (2005) HLT & EMNLP
    • Bunescu, R.C.1    Mooney, R.J.2
  • 4
    • 84862288194 scopus 로고    scopus 로고
    • Introduction to the CoNLL-2005 shared task: Semantic role labeling
    • ACL
    • X. Carreras and L. Màrquez. 2005. Introduction to the CoNLL-2005 shared task: Semantic role labeling. In CONLL, pages 152-164. ACL.
    • (2005) CONLL, pages 152-164
    • Carreras, X.1    Màrquez, L.2
  • 5
    • 84859031856 scopus 로고    scopus 로고
    • Exploiting syntacticosemantic structures for relation extraction
    • Y. Chan and D. Roth. 2011. Exploiting syntacticosemantic structures for relation extraction. In ACL.
    • (2011) ACL
    • Chan, Y.1    Roth, D.2
  • 9
    • 84863790360 scopus 로고    scopus 로고
    • The CoNLL-2010 Shared Task: Learning to detect hedges and their scope in natural language text
    • R. Farkas, V. Vincze, G. Móra, J. Csirik, and G. Szarvas. 2010. The CoNLL-2010 Shared Task: Learning to Detect Hedges and their Scope in Natural Language Text. In CoNLL-2010, pages 1-12.
    • (2010) CoNLL-2010 , pp. 1-12
    • Farkas, R.1    Vincze, V.2    Móra, G.3    Csirik, J.4    Szarvas, G.5
  • 10
    • 84858953049 scopus 로고    scopus 로고
    • Comparison of similarity models for the relation discovery task
    • B. Hachey. 2006. Comparison of similarity models for the relation discovery task. In COLING & ACL 2006, page 25.
    • (2006) COLING & ACL 2006 , pp. 25
    • Hachey, B.1
  • 11
    • 85118960253 scopus 로고    scopus 로고
    • Discovering relations among named entities from large corpora
    • T Hasegawa, S Sekine, and Ralph Grishman. 2004. Discovering relations among named entities from large corpora. In 42nd ACL.
    • (2004) 42nd ACL
    • Hasegawa, T.1    Sekine, S.2    Grishman, R.3
  • 12
    • 84858434398 scopus 로고    scopus 로고
    • A systematic exploration of the feature space for relation extraction
    • J. Jiang and C.X. Zhai. 2007. A systematic exploration of the feature space for relation extraction. In NAACL/HLT, pages 113-120.
    • (2007) NAACL/HLT , pp. 113-120
    • Jiang, J.1    Zhai, C.X.2
  • 13
    • 85185409699 scopus 로고    scopus 로고
    • Multi-task transfer learning for weaklysupervised relation extraction
    • ACL
    • J. Jiang. 2009. Multi-task transfer learning for weaklysupervised relation extraction. In 47th ACL & 4th AFNLP, pages 1012-1020. ACL.
    • (2009) 47th ACL & 4th AFNLP , pp. 1012-1020
    • Jiang, J.1
  • 14
    • 85140744814 scopus 로고    scopus 로고
    • Combining lexical, syntactic, and semantic features with maximum entropy models for extracting relations
    • N. Kambhatla. 2004. Combining lexical, syntactic, and semantic features with maximum entropy models for extracting relations. In ACL 2004 Interactive poster and demonstration sessions.
    • (2004) ACL 2004 Interactive Poster and Demonstration Sessions
    • Kambhatla, N.1
  • 15
    • 79951497578 scopus 로고    scopus 로고
    • Syntactic tree-based relation extraction using a generalization of Collins and Duffy convolution tree kernel
    • M. Khayyamian, S.A. Mirroshandel, and H. Abolhassani. 2009. Syntactic tree-based relation extraction using a generalization of Collins and Duffy convolution tree kernel. In HLT/NAACL: Student Research Workshop.
    • (2009) HLT/NAACL: Student Research Workshop
    • Khayyamian, M.1    Mirroshandel, S.A.2    Abolhassani, H.3
  • 16
    • 84862290552 scopus 로고    scopus 로고
    • Which side are you on? Identifying perspectives at the document and sentence levels
    • Wei-Hao Lin, Theresa Wilson, Janyce Wiebe, and Alexander Hauptmann. 2006. Which side are you on? Identifying perspectives at the document and sentence levels. In CoNLL-2006.
    • (2006) CoNLL-2006
    • Lin, W.-H.1    Wilson, T.2    Wiebe, J.3    Hauptmann, A.4
  • 17
    • 85048535737 scopus 로고    scopus 로고
    • A novel use of statistical parsing to extract information from text
    • S. Miller, H. Fox, L. Ramshaw, and R.Weischedel. 2000. A novel use of statistical parsing to extract information from text. In NAACL.
    • (2000) NAACL
    • Miller, S.1    Fox, H.2    Ramshaw, L.3    Weischedel, R.4
  • 19
    • 84859033558 scopus 로고    scopus 로고
    • US NIST. US National Institute for Standards and Technology (NIST)
    • US NIST. 2003. The ACE 2003 Evaluation Plan. US National Institute for Standards and Technology (NIST), pages 2003-08.
    • (2003) The ACE 2003 Evaluation Plan , pp. 2003-2008
  • 20
    • 84883305442 scopus 로고    scopus 로고
    • Exploiting constituent dependencies for tree kernelbased semantic relation extraction
    • L. Qian, G. Zhou, F. Kong, Q. Zhu, and P. Qian. 2008. Exploiting constituent dependencies for tree kernelbased semantic relation extraction. In 22nd ACL.
    • (2008) 22nd ACL
    • Qian, L.1    Zhou, G.2    Kong, F.3    Zhu, Q.4    Qian, P.5
  • 21
    • 80053392186 scopus 로고    scopus 로고
    • Labeled LDA: A supervised topic model for credit attribution in multi-labeled corpora
    • D. Ramage, D. Hall, R. Nallapati, and C.D. Manning. 2009. Labeled LDA: A supervised topic model for credit attribution in multi-labeled corpora. In EMNLP.
    • (2009) EMNLP
    • Ramage, D.1    Hall, D.2    Nallapati, R.3    Manning, C.D.4
  • 22
    • 77951199659 scopus 로고    scopus 로고
    • Discriminative mixed-membership models
    • IEEE
    • H. Shan, A. Banerjee, and N.C. Oza. 2009. Discriminative Mixed-membership Models. In ICDM, pages 466-475. IEEE.
    • (2009) ICDM , pp. 466-475
    • Shan, H.1    Banerjee, A.2    Oza, N.C.3
  • 23
    • 84859906262 scopus 로고    scopus 로고
    • A joint model of text and aspect ratings for sentiment summarization
    • Ivan Titov and Ryan McDonald. 2008. A joint model of text and aspect ratings for sentiment summarization. In ACL-08: HLT.
    • (2008) ACL-08: HLT
    • Titov, I.1    McDonald, R.2
  • 24
    • 84860532294 scopus 로고    scopus 로고
    • A composite kernel to extract relations between entities with both flat and structured features
    • M. Zhang, J. Zhang, J. Su, and G. Zhou. 2006. A composite kernel to extract relations between entities with both flat and structured features. In 21st ICCL & 44th ACL.
    • (2006) 21st ICCL & 44th ACL
    • Zhang, M.1    Zhang, J.2    Su, J.3    Zhou, G.4
  • 25
    • 84859917836 scopus 로고    scopus 로고
    • Extracting relations with integrated information using kernel methods
    • S. Zhao and R. Grishman. 2005. Extracting relations with integrated information using kernel methods. In 43rd ACL.
    • (2005) 43rd ACL
    • Zhao, S.1    Grishman, R.2
  • 26
    • 84883268641 scopus 로고    scopus 로고
    • Exploring various knowledge in relation extraction
    • G Zhou, S. Jian, Z. Jie, and Z. Min. 2005. Exploring various knowledge in relation extraction. In In 43rd ACL.
    • (2005) 43rd ACL
    • Zhou, G.1    Jian, S.2    Jie, Z.3    Min, Z.4
  • 27
    • 80053360686 scopus 로고    scopus 로고
    • Tree kernel-based relation extraction with context-sensitive structured parse tree information
    • G Zhou, M. Zhang, D.H. Ji, and Q Zhu. 2007. Tree kernel-based relation extraction with context-sensitive structured parse tree information. In EMNLP/CoNLL- 2007, pages 728-736.
    • (2007) EMNLP/CoNLL- 2007 , pp. 728-736
    • Zhou, G.1    Zhang, M.2    Ji, D.H.3    Zhu, Q.4
  • 28
    • 40649097750 scopus 로고    scopus 로고
    • Hierarchical learning strategy in semantic relation extraction
    • G.D. Zhou, M. Zhang, D.H. Ji, and Q.M. Zhu. 2008. Hierarchical learning strategy in semantic relation extraction. Information Processing & Management, 44(3):1008-1021.
    • (2008) Information Processing & Management , vol.44 , Issue.3 , pp. 1008-1021
    • Zhou, G.D.1    Zhang, M.2    Ji, D.H.3    Zhu, Q.M.4
  • 29
    • 77956530160 scopus 로고    scopus 로고
    • Conditional topic random fields
    • ACM
    • J. Zhu and E.P. Xing. 2010. Conditional Topic Random Fields. In ICML. ACM.
    • (2010) ICML
    • Zhu, J.1    Xing, E.P.2
  • 30
    • 71149117321 scopus 로고    scopus 로고
    • MedLDA: Maximum margin supervised topic models for regression and classification
    • ACM
    • J. Zhu, A. Ahmed, and E.P. Xing. 2009. MedLDA: maximum margin supervised topic models for regression and classification. In ICML, pages 1257-1264. ACM.
    • (2009) ICML , pp. 1257-1264
    • Zhu, J.1    Ahmed, A.2    Xing, E.P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.