메뉴 건너뛰기




Volumn 25, Issue 7, 2009, Pages 904-909

Matching methods for observational microarray studies

Author keywords

[No Author keywords available]

Indexed keywords

ACUTE MEGAKARYOCYTIC LEUKEMIA; ADOLESCENT; ADULT; AGED; ARTICLE; BIOINFORMATICS; CHILD; CLINICAL ARTICLE; CONFOUNDING VARIABLE; CONTROLLED STUDY; COVARIANCE; DOWN SYNDROME; FEMALE; GENE EXPRESSION REGULATION; GENE IDENTIFICATION; HUMAN; INFANT; MALE; MALIGNANT NEOPLASTIC DISEASE; MICROARRAY ANALYSIS; OBSERVATIONAL STUDY; PRESCHOOL CHILD; PRIORITY JOURNAL;

EID: 63549121485     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btn650     Document Type: Article
Times cited : (19)

References (23)
  • 1
    • 0001677717 scopus 로고
    • Controlling the false discovery rate - a practical and powerful approach to multiple testing
    • Benjamini,Y. and Hochberg,Y. (1995) Controlling the false discovery rate - a practical and powerful approach to multiple testing. J. Roy. Stat. Soc. B Met., 57, 289-300.
    • (1995) J. Roy. Stat. Soc. B Met , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 2
    • 33644759290 scopus 로고    scopus 로고
    • Identification of distinct molecular phenotypes in acute megakaryoblastic leukemia by gene expression profiling
    • Bourquina,J. et al. (2006) Identification of distinct molecular phenotypes in acute megakaryoblastic leukemia by gene expression profiling. Proc. Natl Acad. Sci. USA, 103, 3339-3344.
    • (2006) Proc. Natl Acad. Sci. USA , vol.103 , pp. 3339-3344
    • Bourquina, J.1
  • 3
    • 1642317557 scopus 로고    scopus 로고
    • Gene expression profile of adult t-cell acute lymphocytic leukemia identifies distinct subsets of patients with different response to therapy and survival
    • Chiaretti,S. et al. (2004) Gene expression profile of adult t-cell acute lymphocytic leukemia identifies distinct subsets of patients with different response to therapy and survival. Blood, 103, 2771-2778.
    • (2004) Blood , vol.103 , pp. 2771-2778
    • Chiaretti, S.1
  • 5
    • 0003138938 scopus 로고
    • Comparison of multivariate matching methods: Structures, distances, and algorithms
    • Gu,X. and Rosenbaum,P. (1993) Comparison of multivariate matching methods: Structures, distances, and algorithms. J. Comput. Graph. Stat., 2, 405-420.
    • (1993) J. Comput. Graph. Stat , vol.2 , pp. 405-420
    • Gu, X.1    Rosenbaum, P.2
  • 6
    • 4944238507 scopus 로고    scopus 로고
    • Full matching in an observational study of coaching for the sat
    • Hansen,B. (2004) Full matching in an observational study of coaching for the sat. J. Am. Stat. Assoc., 99, 609-618.
    • (2004) J. Am. Stat. Assoc , vol.99 , pp. 609-618
    • Hansen, B.1
  • 7
    • 63549118259 scopus 로고    scopus 로고
    • Hansen,B. et al, 2008 Functions for optimal matching. r package version 0.4-1. Available at
    • Hansen,B. et al. (2008) Functions for optimal matching. r package version 0.4-1. Available at http://www.stat.lsa.umich.edu/bbh/ optmatch.html.
  • 8
    • 34548857107 scopus 로고    scopus 로고
    • Combining propensity score matching and group-based trajectory analysis in an observational study
    • Haviland,A. et al. (2007) Combining propensity score matching and group-based trajectory analysis in an observational study. Psychol. Methods, 12, 247-267.
    • (2007) Psychol. Methods , vol.12 , pp. 247-267
    • Haviland, A.1
  • 9
    • 0001589146 scopus 로고
    • Rank methods for combination of independent experiments in analysis of variance
    • Hodges,J. and Lehmann,E. (1962) Rank methods for combination of independent experiments in analysis of variance. Ann. Math. Stat., 33, 482-497.
    • (1962) Ann. Math. Stat , vol.33 , pp. 482-497
    • Hodges, J.1    Lehmann, E.2
  • 10
    • 37549057612 scopus 로고    scopus 로고
    • Globalancova: Exploration and assessment of gene group effects
    • Hummel,M. et al. (2008) Globalancova: Exploration and assessment of gene group effects. Bioinformatics, 24, 78-85.
    • (2008) Bioinformatics , vol.24 , pp. 78-85
    • Hummel, M.1
  • 11
    • 40549104115 scopus 로고    scopus 로고
    • Misunderstandings between experimentalists and observationalists about causal inference
    • Imai,K. et al. (2008) Misunderstandings between experimentalists and observationalists about causal inference. J. R. Stat. Soc. [ser. A], 171, 481-502.
    • (2008) J. R. Stat. Soc. [ser. A] , vol.171 , pp. 481-502
    • Imai, K.1
  • 12
    • 12344269956 scopus 로고    scopus 로고
    • The baumgartner-wei ss-schindler test for the detection of differentially expressed genes in replicated microarray experiments
    • Neuhauser,M. and Senske,R. (2004) The baumgartner-wei ss-schindler test for the detection of differentially expressed genes in replicated microarray experiments. Bioinformatics, 20, 3553-3564.
    • (2004) Bioinformatics , vol.20 , pp. 3553-3564
    • Neuhauser, M.1    Senske, R.2
  • 13
    • 0028619852 scopus 로고
    • A cautionary note on applying scores in stratified data
    • Podgor,M. (1994) A cautionary note on applying scores in stratified data. Biometrics, 50, 1215-1218.
    • (1994) Biometrics , vol.50 , pp. 1215-1218
    • Podgor, M.1
  • 14
    • 0345293169 scopus 로고    scopus 로고
    • Epidemiology, cancer genetics and microarrays: Making correct inferences, using appropriate designs
    • Potter,J. (2003) Epidemiology, cancer genetics and microarrays: Making correct inferences, using appropriate designs. Trends Genet., 19, 690-695.
    • (2003) Trends Genet , vol.19 , pp. 690-695
    • Potter, J.1
  • 15
    • 0000180788 scopus 로고
    • A characterization of optimal designs for observational studies
    • Rosenbaum,P. (1991) A characterization of optimal designs for observational studies. J. R. Stat. Soc., 53, 597-610.
    • (1991) J. R. Stat. Soc , vol.53 , pp. 597-610
    • Rosenbaum, P.1
  • 17
    • 84949193513 scopus 로고
    • Reducing bias in observational studies using subclassification on the propensity score
    • Rosenbaum,P. and Rubin,D. (1984) Reducing bias in observational studies using subclassification on the propensity score. J. Am. Stat. Assoc. 79, 516-524.
    • (1984) J. Am. Stat. Assoc , vol.79 , pp. 516-524
    • Rosenbaum, P.1    Rubin, D.2
  • 18
    • 84945581878 scopus 로고
    • Constructing a control-group using multivariate matched sampling methods that incorporate the propensity score
    • Rosenbaum,P. and Rubin,D. (1985) Constructing a control-group using multivariate matched sampling methods that incorporate the propensity score. Am. Stat., 39, 33-38.
    • (1985) Am. Stat , vol.39 , pp. 33-38
    • Rosenbaum, P.1    Rubin, D.2
  • 19
    • 85144841000 scopus 로고
    • Using multivariate matched sampling and regression adjustment to control bias in observational studies
    • Rubin,D. (1979) Using multivariate matched sampling and regression adjustment to control bias in observational studies. J. Am. Stat. Assoc., 74, 318-328.
    • (1979) J. Am. Stat. Assoc , vol.74 , pp. 318-328
    • Rubin, D.1
  • 20
    • 33846253571 scopus 로고    scopus 로고
    • The design versus the analysis of observational studies for causal effects: Parallels with the design of randomization trials
    • Rubin,D. (2007) The design versus the analysis of observational studies for causal effects: Parallels with the design of randomization trials. Stat. Med., 26, 20-36.
    • (2007) Stat. Med , vol.26 , pp. 20-36
    • Rubin, D.1
  • 21
    • 1542742319 scopus 로고    scopus 로고
    • Combining propensity score matching with additional adjustments for prognostic covariates
    • Rubin,D. and Thomas,N. (2000) Combining propensity score matching with additional adjustments for prognostic covariates. J. Am. Stat. Assoc. 95, 573-585.
    • (2000) J. Am. Stat. Assoc , vol.95 , pp. 573-585
    • Rubin, D.1    Thomas, N.2
  • 23
    • 0036856209 scopus 로고    scopus 로고
    • Nonparametric methods for identifying differentially expressed genes in microarray data
    • Troyanskaya,O. et al. (2002) Nonparametric methods for identifying differentially expressed genes in microarray data. Bioinformatics, 18, 1454-1461.
    • (2002) Bioinformatics , vol.18 , pp. 1454-1461
    • Troyanskaya, O.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.