메뉴 건너뛰기




Volumn 72, Issue 10-12, 2009, Pages 2627-2635

Systemical convergence rate analysis of convex incremental feedforward neural networks

Author keywords

Convergence rate; Feedforward neural networks; Random hidden neurons; Universal approximation

Indexed keywords

ALTERNATIVE ALGORITHMS; CONVERGENCE RATE; DIFFERENTIAL FUNCTIONS; FASTER CONVERGENCES; GENERALIZATION PERFORMANCE; INCREMENTAL EXTREME LEARNING MACHINES; LOCAL MINIMUMS; PARAMETER SELECTIONS; RANDOM HIDDEN NEURONS; REGRESSION PROBLEMS; RESIDUAL ERRORS; UNIVERSAL APPROXIMATION;

EID: 67349131281     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2008.10.016     Document Type: Article
Times cited : (14)

References (19)
  • 1
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • Cybenko G. Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals and Systems 2 (1989) 303-314
    • (1989) Mathematics of Control, Signals and Systems , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 2
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K., Stinchcombe M., and White H. Multilayer feedforward networks are universal approximators. Neural Networks 2 (1989) 359-366
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 3
    • 0026373647 scopus 로고
    • Approximation of functions on a compact set by finite sums of a sigmoid function without scaling
    • Ito Y. Approximation of functions on a compact set by finite sums of a sigmoid function without scaling. Neural Networks 4 (1991) 817-826
    • (1991) Neural Networks , vol.4 , pp. 817-826
    • Ito, Y.1
  • 4
    • 0025751820 scopus 로고
    • Approximation capabilities of multilayer feedforward networks
    • Hornik K. Approximation capabilities of multilayer feedforward networks. Neural Networks 4 (1991) 251-257
    • (1991) Neural Networks , vol.4 , pp. 251-257
    • Hornik, K.1
  • 5
    • 0026479224 scopus 로고
    • d by linear combinations of shifted rotations of a sigmoid function with and without scaling
    • d by linear combinations of shifted rotations of a sigmoid function with and without scaling. Neural Networks 5 (1992) 105-115
    • (1992) Neural Networks , vol.5 , pp. 105-115
    • Ito, Y.1
  • 6
    • 0027262895 scopus 로고
    • Multilayer feedforward networks with a nonpolynomial activation function can approximate any function
    • Leshno M., Lin V.Y., Pinkus A., and Schocken S. Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Networks 6 (1993) 861-867
    • (1993) Neural Networks , vol.6 , pp. 861-867
    • Leshno, M.1    Lin, V.Y.2    Pinkus, A.3    Schocken, S.4
  • 7
    • 0000796112 scopus 로고
    • A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural networks
    • Jones L.K. A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural networks. The Annals of Statistics 20 1 (1992) 608-613
    • (1992) The Annals of Statistics , vol.20 , Issue.1 , pp. 608-613
    • Jones, L.K.1
  • 8
    • 0027599793 scopus 로고
    • Universal approximation bounds for superpositions of a sigmoid function
    • Barron A.R. Universal approximation bounds for superpositions of a sigmoid function. IEEE Transactions on Information Theory 39 3 (1993) 930-945
    • (1993) IEEE Transactions on Information Theory , vol.39 , Issue.3 , pp. 930-945
    • Barron, A.R.1
  • 10
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • Huang G.-B., Zhu Q.-Y., and Siew C.-K. Extreme learning machine: theory and applications. Neurocomputing 70 (2006) 489-501
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 11
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • Huang G.-B., Chen L., and Siew C.-K. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Transactions on Neural Networks 17 4 (2006) 879-892
    • (2006) IEEE Transactions on Neural Networks , vol.17 , Issue.4 , pp. 879-892
    • Huang, G.-B.1    Chen, L.2    Siew, C.-K.3
  • 12
    • 34548158996 scopus 로고    scopus 로고
    • Convex incremental extreme learning machine
    • Huang G.-B., and Chen L. Convex incremental extreme learning machine. Neurocomputing 70 (2007) 3056-3062
    • (2007) Neurocomputing , vol.70 , pp. 3056-3062
    • Huang, G.-B.1    Chen, L.2
  • 14
    • 0031236099 scopus 로고    scopus 로고
    • Objective functions for training new hidden units in constructive neural networks
    • Kwok T.-Y., and Yeung D.-Y. Objective functions for training new hidden units in constructive neural networks. IEEE Transactions on Neural Networks 8 5 (1997) 1131-1148
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.5 , pp. 1131-1148
    • Kwok, T.-Y.1    Yeung, D.-Y.2
  • 17
    • 0001071040 scopus 로고
    • A resource-allocating network for function interpolation
    • Platt J. A resource-allocating network for function interpolation. Neural Computation 3 (1991) 213-225
    • (1991) Neural Computation , vol.3 , pp. 213-225
    • Platt, J.1
  • 18
    • 0031568361 scopus 로고    scopus 로고
    • A sequential learning scheme for function approximation using minimal radial basis function (rbf) neural networks
    • Yingwei L., Saratchandran P., and Sundararajan N. A sequential learning scheme for function approximation using minimal radial basis function (rbf) neural networks. Neural Computation 9 (1997) 461-478
    • (1997) Neural Computation , vol.9 , pp. 461-478
    • Yingwei, L.1    Saratchandran, P.2    Sundararajan, N.3
  • 19
    • 0003408496 scopus 로고    scopus 로고
    • Department of Information and Computer Sciences, University of California, Irvine, USA
    • C. Blake, C. Merz, UCI repository of machine learning databases, Department of Information and Computer Sciences, University of California, Irvine, USA, 1998 〈http://www.ics.uci.edu/∼mlearn/MLRepository.html〉.
    • (1998) UCI repository of machine learning databases
    • Blake, C.1    Merz, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.