-
1
-
-
0024861871
-
Approximation by superpositions of a sigmoidal function
-
Cybenko G. Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals and Systems 2 (1989) 303-314
-
(1989)
Mathematics of Control, Signals and Systems
, vol.2
, pp. 303-314
-
-
Cybenko, G.1
-
2
-
-
0024880831
-
Multilayer feedforward networks are universal approximators
-
Hornik K., Stinchcombe M., and White H. Multilayer feedforward networks are universal approximators. Neural Networks 2 (1989) 359-366
-
(1989)
Neural Networks
, vol.2
, pp. 359-366
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
3
-
-
0026373647
-
Approximation of functions on a compact set by finite sums of a sigmoid function without scaling
-
Ito Y. Approximation of functions on a compact set by finite sums of a sigmoid function without scaling. Neural Networks 4 (1991) 817-826
-
(1991)
Neural Networks
, vol.4
, pp. 817-826
-
-
Ito, Y.1
-
4
-
-
0025751820
-
Approximation capabilities of multilayer feedforward networks
-
Hornik K. Approximation capabilities of multilayer feedforward networks. Neural Networks 4 (1991) 251-257
-
(1991)
Neural Networks
, vol.4
, pp. 251-257
-
-
Hornik, K.1
-
5
-
-
0026479224
-
d by linear combinations of shifted rotations of a sigmoid function with and without scaling
-
d by linear combinations of shifted rotations of a sigmoid function with and without scaling. Neural Networks 5 (1992) 105-115
-
(1992)
Neural Networks
, vol.5
, pp. 105-115
-
-
Ito, Y.1
-
6
-
-
0027262895
-
Multilayer feedforward networks with a nonpolynomial activation function can approximate any function
-
Leshno M., Lin V.Y., Pinkus A., and Schocken S. Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Networks 6 (1993) 861-867
-
(1993)
Neural Networks
, vol.6
, pp. 861-867
-
-
Leshno, M.1
Lin, V.Y.2
Pinkus, A.3
Schocken, S.4
-
7
-
-
0000796112
-
A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural networks
-
Jones L.K. A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural networks. The Annals of Statistics 20 1 (1992) 608-613
-
(1992)
The Annals of Statistics
, vol.20
, Issue.1
, pp. 608-613
-
-
Jones, L.K.1
-
8
-
-
0027599793
-
Universal approximation bounds for superpositions of a sigmoid function
-
Barron A.R. Universal approximation bounds for superpositions of a sigmoid function. IEEE Transactions on Information Theory 39 3 (1993) 930-945
-
(1993)
IEEE Transactions on Information Theory
, vol.39
, Issue.3
, pp. 930-945
-
-
Barron, A.R.1
-
10
-
-
33745903481
-
Extreme learning machine: theory and applications
-
Huang G.-B., Zhu Q.-Y., and Siew C.-K. Extreme learning machine: theory and applications. Neurocomputing 70 (2006) 489-501
-
(2006)
Neurocomputing
, vol.70
, pp. 489-501
-
-
Huang, G.-B.1
Zhu, Q.-Y.2
Siew, C.-K.3
-
11
-
-
33745918399
-
Universal approximation using incremental constructive feedforward networks with random hidden nodes
-
Huang G.-B., Chen L., and Siew C.-K. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Transactions on Neural Networks 17 4 (2006) 879-892
-
(2006)
IEEE Transactions on Neural Networks
, vol.17
, Issue.4
, pp. 879-892
-
-
Huang, G.-B.1
Chen, L.2
Siew, C.-K.3
-
12
-
-
34548158996
-
Convex incremental extreme learning machine
-
Huang G.-B., and Chen L. Convex incremental extreme learning machine. Neurocomputing 70 (2007) 3056-3062
-
(2007)
Neurocomputing
, vol.70
, pp. 3056-3062
-
-
Huang, G.-B.1
Chen, L.2
-
14
-
-
0031236099
-
Objective functions for training new hidden units in constructive neural networks
-
Kwok T.-Y., and Yeung D.-Y. Objective functions for training new hidden units in constructive neural networks. IEEE Transactions on Neural Networks 8 5 (1997) 1131-1148
-
(1997)
IEEE Transactions on Neural Networks
, vol.8
, Issue.5
, pp. 1131-1148
-
-
Kwok, T.-Y.1
Yeung, D.-Y.2
-
15
-
-
0001857994
-
Efficient BackProp
-
Y. LeCun, L. Bottou, G.B. Orr, K.-R. Müller, Efficient BackProp, in: Lecture Notes in Computer Science, vol. 1524, 1998, pp. 9-50.
-
(1998)
Lecture Notes in Computer Science
, vol.1524
, pp. 9-50
-
-
LeCun, Y.1
Bottou, L.2
Orr, G.B.3
Müller, K.-R.4
-
16
-
-
84899013173
-
Support vector regression machines
-
Mozer M.C., Jordan M.I., and Petsche T. (Eds), The MIT Press, Cambridge
-
Drucker H., Burges C.J.C., Kaufman L., Smola A., and Vapnik V. Support vector regression machines. In: Mozer M.C., Jordan M.I., and Petsche T. (Eds). Advances in Neural Information Processing Systems vol. 9 (1997), The MIT Press, Cambridge 155
-
(1997)
Advances in Neural Information Processing Systems
, vol.9
, pp. 155
-
-
Drucker, H.1
Burges, C.J.C.2
Kaufman, L.3
Smola, A.4
Vapnik, V.5
-
17
-
-
0001071040
-
A resource-allocating network for function interpolation
-
Platt J. A resource-allocating network for function interpolation. Neural Computation 3 (1991) 213-225
-
(1991)
Neural Computation
, vol.3
, pp. 213-225
-
-
Platt, J.1
-
18
-
-
0031568361
-
A sequential learning scheme for function approximation using minimal radial basis function (rbf) neural networks
-
Yingwei L., Saratchandran P., and Sundararajan N. A sequential learning scheme for function approximation using minimal radial basis function (rbf) neural networks. Neural Computation 9 (1997) 461-478
-
(1997)
Neural Computation
, vol.9
, pp. 461-478
-
-
Yingwei, L.1
Saratchandran, P.2
Sundararajan, N.3
-
19
-
-
0003408496
-
-
Department of Information and Computer Sciences, University of California, Irvine, USA
-
C. Blake, C. Merz, UCI repository of machine learning databases, Department of Information and Computer Sciences, University of California, Irvine, USA, 1998 〈http://www.ics.uci.edu/∼mlearn/MLRepository.html〉.
-
(1998)
UCI repository of machine learning databases
-
-
Blake, C.1
Merz, C.2
|