-
2
-
-
0000013152
-
On the Statistical analysis of dirty pictures
-
Julian Besag. On the Statistical analysis of dirty pictures. Journal of the Royal Statistical Society, 48(3):259-302, 1986.
-
(1986)
Journal of the Royal Statistical Society
, vol.48
, Issue.3
, pp. 259-302
-
-
Besag, J.1
-
3
-
-
0000913755
-
Spatial interaction and the statistical analysis of lattice systems
-
Julian Besag. Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society, 36(2): 192-236, 1974.
-
(1974)
Journal of the Royal Statistical Society
, vol.36
, Issue.2
, pp. 192-236
-
-
Besag, J.1
-
5
-
-
0038754751
-
Directed scale-free graphs
-
Béla Bollobás, Christian Borgs, Jennifer Chayes, and Oliver Riordan. Directed scale-free graphs. In Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 132-139,2003.
-
(2003)
Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)
, pp. 132-139
-
-
Bollobás, B.1
Borgs, C.2
Chayes, J.3
Riordan, O.4
-
7
-
-
0031625423
-
Learning to extract symbolic knowledge from the World Wide Web
-
Mark Craven, Dan DiPasquo, Dayne Freitag, Andrew K. McCallum, Tom M. Mitchell, Kamal Nigam, and Sean Slattery. Learning to extract symbolic knowledge from the World Wide Web. In Proceedings of the 15th Conference of the American Association for Artificial Intelligence (AAAI), pages 509-516, 1998.
-
(1998)
Proceedings of the 15th Conference of the American Association for Artificial Intelligence (AAAI)
, pp. 509-516
-
-
Craven, M.1
Dipasquo, D.2
Freitag, D.3
McCallum, A.K.4
Mitchell, T.M.5
Nigam, K.6
Slattery, S.7
-
8
-
-
0031120321
-
Inducing features of random fields
-
Stephen Della Pietra, Vincent Della Pietra, and John Lafferty. Inducing features of random fields. IEEE Transactions on Pattern Analysis andMachine Intelligence, 19(4):380-393, 1997.
-
(1997)
IEEE Transactions on Pattern Analysis AndMachine Intelligence
, vol.19
, Issue.4
, pp. 380-393
-
-
Pietra, S.D.1
Pietra, V.D.2
Lafferty, J.3
-
9
-
-
0001235413
-
The description of a random field by means of conditional probabilities and conditions of its regularity
-
Roland L. Dobrushin. The description of a random field by means of conditional probabilities and conditions of its regularity. Theory of Probability and its Applications, 13(2): 197-224, 1968.
-
(1968)
Theory of Probability and Its Applications
, vol.13
, Issue.2
, pp. 197-224
-
-
Dobrushin, R.L.1
-
11
-
-
84865109143
-
The treatment of missing values in logistic regression
-
Karen Yuen Fung and Barbara A. Wrobel. The treatment of missing values in logistic regression. Biometrical Journal, 31(1):35-47, 1989.
-
(1989)
Biometrical Journal
, vol.31
, Issue.1
, pp. 35-47
-
-
Fung, K.Y.1
Wrobel, B.A.2
-
13
-
-
65449133627
-
Using ghost edges for classification in sparsely labeled networks
-
Brian Gallagher, Hanghang Tong, Tina Eliassi-Rad, and Christos Faloutsos. Using ghost edges for classification in sparsely labeled networks. In Proceeding of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 256-264, 2008.
-
(2008)
Proceeding of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 256-264
-
-
Gallagher, B.1
Tong, H.2
Eliassi-Rad, T.3
Faloutsos, C.4
-
16
-
-
0002370418
-
A tutorial on learning with bayesian networks
-
M. Jordan, editor, MIT Press
-
David Heckerman. A tutorial on learning with bayesian networks. In M. Jordan, editor, Learning in Graphical Models. MIT Press, 1999.
-
(1999)
Learning in Graphical Models.
-
-
Heckerman, D.1
-
22
-
-
0031381525
-
Wrappers for feature subset selection
-
PII S000437029700043X
-
Ron Kohavi and George H. John. Wrappers for feature subset selection. Artifical Intelligence, 97 (l-2):273-324, 1997. (Pubitemid 127401107)
-
(1997)
Artificial Intelligence
, vol.97
, Issue.1-2
, pp. 273-324
-
-
Kohavi, R.1
John, G.H.2
-
23
-
-
70549101860
-
Graphical models in a nutshell
-
L. Getoor and B. Taskar, editors, MIT Press
-
Daphne Koller, Nir Friedman, Lise Getoor, and Benjamin Taskar. Graphical models in a nutshell. In L. Getoor and B. Taskar, editors, An Introduction to Statistical Relational Learning. MIT Press, 2007.
-
(2007)
An Introduction to Statistical Relational Learning.
-
-
Koller, D.1
Friedman, N.2
Getoor, L.3
Taskar, B.4
-
29
-
-
34249102504
-
Classification in networked data: A toolkit and a univariate case study
-
Sofus A. Macskassy and Foster Provost. Classification in networked data: A toolkit and a univariate case study. Journal of Machine Learning Research, 8:935-983, 2007.
-
(2007)
Journal of Machine Learning Research
, vol.8
, pp. 935-983
-
-
Macskassy, S.A.1
Provost, F.2
-
32
-
-
0000806922
-
Automating the construction of internet portals with machine learning
-
Andrew McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore. Automating the construction of internet portals with machine learning. Information Retrieval, 3:127-163, 2000b.
-
(2000)
Information Retrieval
, vol.3
, pp. 127-163
-
-
McCallum, A.1
Nigam, K.2
Rennie, J.3
Seymore, K.4
-
35
-
-
0032001728
-
Turbo decoding as an instance of Pearl's "belief propagation" algorithm
-
Robert J. McEliece, David J. C. MacKay, and Jung-Fu Cheng. Turbo decoding as an instance of Pearl's "belief propagation" algorithm. IEEE Journal on Selected Areas in Communications, 16 (2): 140-152, 1998.
-
(1998)
IEEE Journal on Selected Areas in Communications
, vol.16
, Issue.2
, pp. 140-152
-
-
McEliece, R.J.1
MacKay, D.J.C.2
Cheng, J.-F.3
-
36
-
-
0035639140
-
Birds of a feather: Homophily in social networks
-
DOI 10.1146/annurev.soc.27.1.415
-
Miller McPherson, Lynn Smith-Lovin, and James M. Cook. Birds of a feather: Homophily in social networks. Annual Review of Sociology, 27:415-444, 2001. (Pubitemid 33342718)
-
(2001)
Annual Review of Sociology
, vol.27
, pp. 415-444
-
-
McPherson, M.1
Smith-Lovin, L.2
Cook, J.M.3
-
38
-
-
50649124443
-
A bias/variance decomposition for models using collective inference
-
Jennifer Neville and David Jensen. A bias/variance decomposition for models using collective inference. Machine Learning Journal, 73(1):87-106, 2008.
-
(2008)
Machine Learning Journal
, vol.73
, Issue.1
, pp. 87-106
-
-
Neville, J.1
Jensen, D.2
-
42
-
-
77952399122
-
Learning relational probability trees
-
Jennifer Neville, David Jensen, Lisa Friedland, and Michael Hay. Learning relational probability trees. In Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 625-630, 2003a.
-
(2003)
Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 625-630
-
-
Neville, J.1
Jensen, D.2
Friedland, L.3
Hay, M.4
-
44
-
-
32344439564
-
Using relational knowledge discovery to prevent securities fraud
-
Jennifer Neville, Özgür Simsek, David Jensen, John Komoroske, Kelly Palmer, and Henry G. Goldberg. Using relational knowledge discovery to prevent securities fraud. In Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 449-458, 2005.
-
(2005)
Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 449-458
-
-
Neville, J.1
Simsek, Ö.2
Jensen, D.3
Komoroske, J.4
Palmer, K.5
Goldberg, H.G.6
-
45
-
-
0038752085
-
Mixing patterns in networks
-
Mark E. Newman. Mixing patterns in networks. Physical Review E, 67(2):026126, 2003.
-
(2003)
Physical Review e
, vol.67
, Issue.2
, pp. 026126
-
-
Newman, M.E.1
-
47
-
-
49549110019
-
Exploiting network structure for active inference in collective classification
-
Matthew J. Rattigan, Marc Maier, David Jensen, Bin Wu, Xin Pei, JianBin Tan, and Yi Wang:. Exploiting network structure for active inference in collective classification. In Proceedings of the Workshop on Mining Graphs and Complex Structures at the 7th IEEE International Conference on Data Mining (ICDM), pages 429-434, 2007.
-
(2007)
Proceedings of the Workshop on Mining Graphs and Complex Structures at the 7th IEEE International Conference on Data Mining (ICDM)
, pp. 429-434
-
-
Rattigan, M.J.1
Maier, M.2
Jensen, D.3
Wu, B.4
Pei, X.5
Tan, J.6
Wang, Y.7
-
48
-
-
32044466073
-
Markov logic networks
-
Matthew Richardson and Pedro Domingos. Markov logic networks. Machine Learning, 62(1-2): 107-136, 2006.
-
(2006)
Machine Learning
, vol.62
, Issue.1-2
, pp. 107-136
-
-
Richardson, M.1
Domingos, P.2
-
49
-
-
34547696888
-
Handling missing values when applying classification models
-
JuI
-
Maytal Saar-Tsechansky and Foster Provost. Handling missing values when applying classification models. Journal of Machine Learning Research, 8(JuI): 1623-1657, 2007.
-
(2007)
Journal of Machine Learning Research
, vol.8
, pp. 1623-1657
-
-
Saar-Tsechansky, M.1
Provost, F.2
-
52
-
-
38049116663
-
-
Technical Report CS-TR-4858, University of Maryland, College Park, MD, February
-
Prithviraj Sen and Lise Getoor. Link-based classification. Technical Report CS-TR-4858, University of Maryland, College Park, MD, February 2007.
-
(2007)
Link-based Classification.
-
-
Sen, P.1
Getoor, L.2
-
53
-
-
53749083869
-
Collective classification in network data
-
Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Gallagher, and Tina Eliassi-Rad. Collective classification in network data. AI Magazine, Special Issue on AI and Networks, 29(3): 93-106, 2008.
-
(2008)
AI Magazine, Special Issue on AI and Networks
, vol.29
, Issue.3
, pp. 93-106
-
-
Sen, P.1
Namata, G.2
Bilgic, M.3
Getoor, L.4
Gallagher, B.5
Eliassi-Rad, T.6
-
55
-
-
33747050962
-
Latent linkage semantic kernels for collective classification of link data
-
YongHong Tian, Tiejun Huang, and Wen Gao. Latent linkage semantic kernels for collective classification of link data. Journal of Intelligent Information Systems, 26(3):269-301, 2006.
-
(2006)
Journal of Intelligent Information Systems
, vol.26
, Issue.3
, pp. 269-301
-
-
Tian, Y.1
Huang, T.2
Gao, W.3
-
56
-
-
84880867598
-
Instance-based AMN classification for improved object recognition in 2D and 3D laser range data. in
-
Rudolph Triebel, Richard Schmidt, Oscar Martinez Mozos, and Wolfram Burgard. Instance-based AMN classification for improved object recognition in 2D and 3D laser range data. In Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI), pages 22252230, 2007.
-
(2007)
Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI)
, pp. 22252230
-
-
Triebel, R.1
Schmidt, R.2
Mozos, O.M.3
Burgard, W.4
-
58
-
-
0000049635
-
Exploiting causal independence in bayesian network inference
-
Nevin Lianwen Zhang and David Poole. Exploiting causal independence in bayesian network inference. Journal of Artificial Intelligence Research, 5:301-328, 1996.
-
(1996)
Journal of Artificial Intelligence Research
, vol.5
, pp. 301-328
-
-
Zhang, N.L.1
Poole, D.2
|