메뉴 건너뛰기




Volumn 3, Issue 2, 2010, Pages 187-193

ANN-based PEMFC modeling by a new learning algorithm

Author keywords

Artificial neural network; Learning algorithm; Modeling; Particle swarm optimization; Proton exchange membrane fuel cell

Indexed keywords


EID: 79955648346     PISSN: 19749821     EISSN: 25331701     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (11)

References (26)
  • 1
    • 33846201550 scopus 로고    scopus 로고
    • EG&G Technical Services, Inc, 7th edition, November
    • EG&G Technical Services, Inc., Fuel cell hand book, 7th edition, November 2004.
    • (2004) Fuel cell hand book
  • 2
    • 0242694559 scopus 로고    scopus 로고
    • On-board fuel cell power supply modeling on the basis of neural network methodology
    • S. Jemë, D. Hissel, M. C. Péra, J. M. Kauffmann, On-board fuel cell power supply modeling on the basis of neural network methodology, J. Power Sources, vol. 124: 479-486, 2003.
    • (2003) J. Power Sources , vol.124 , pp. 479-486
    • Jemë, S.1    Hissel, D.2    Péra, M.C.3    Kauffmann, J.M.4
  • 3
    • 11844305914 scopus 로고    scopus 로고
    • A hybrid neural network model for PEM fuel cells
    • Shaoduan Ou, Luke E. K. Achenie, A hybrid neural network model for PEM fuel cells, J. Power Sources, vol. 140,: 319-330, 2005.
    • (2005) J. Power Sources , vol.140 , pp. 319-330
    • Ou, S.1    Achenie, L.E.K.2
  • 4
    • 50249167631 scopus 로고    scopus 로고
    • Static Modeling by Neural Networks of a PEM Fuel Cell
    • M. Hatti, M. Tioursi, W. Nouibat, Static Modeling by Neural Networks of a PEM Fuel Cell, IEEE Conference: 2121-2126, 2006.
    • (2006) IEEE Conference , pp. 2121-2126
    • Hatti, M.1    Tioursi, M.2    Nouibat, W.3
  • 6
    • 79955650382 scopus 로고    scopus 로고
    • Neural Network Approach for Semi-Empirical Modelling of PEM Fuel-Cell
    • July 9-12, Montreal, Quebec, Canada
    • M. Hatti, M. Tioursi, W. Nouibat, Neural Network Approach for Semi-Empirical Modelling of PEM Fuel-Cell, IEEE ISIE 2006, July 9-12, Montreal, Quebec, Canada, 2006.
    • (2006) IEEE ISIE 2006
    • Hatti, M.1    Tioursi, M.2    Nouibat, W.3
  • 7
    • 34748839656 scopus 로고    scopus 로고
    • Neural Network Model for a Commercial PEM Fuel Cell System
    • Saengrung, A., Abtahi A., Zilouchian, A., Neural Network Model for a Commercial PEM Fuel Cell System, J. Power Sources, vol. 172: 749-759, 2007.
    • (2007) J. Power Sources , vol.172 , pp. 749-759
    • Saengrung, A.1    Abtahi, A.2    Zilouchian, A.3
  • 8
    • 36448971321 scopus 로고    scopus 로고
    • Multi-input and multi-output neural model of the mechanical nonlinear behavior of a PEM fuel cell system
    • V. Rouss, W. Charon, Multi-input and multi-output neural model of the mechanical nonlinear behavior of a PEM fuel cell system, J. Power Sources, vol. 175, pp.1-17, 2008.
    • (2008) J. Power Sources , vol.175 , pp. 1-17
    • Rouss, V.1    Charon, W.2
  • 9
    • 65949115976 scopus 로고    scopus 로고
    • The neural networks based modeling of a polybenzimidazole-based polymer electrolyte membrane fuel cell: Effect of temperature
    • J. Lobatoa, P. Cãnizaresa, M. A. Rodrigoa, J. J. Linaresa, C. G. Piuleacb, S. Curteanu, The neural networks based modeling of a polybenzimidazole-based polymer electrolyte membrane fuel cell: Effect of temperature, J. Power Sources, vol. 192: 190-194,2009.
    • (2009) J. Power Sources , vol.192 , pp. 190-194
    • Lobatoa, J.1    Cãnizaresa, P.2    Rodrigoa, M.A.3    Linaresa, J.J.4    Piuleacb, C.G.5    Curteanu, S.6
  • 10
    • 12144252495 scopus 로고    scopus 로고
    • An improved PSO-based ANN with simulated annealing technique
    • Y. Da, G. Xiurun, An improved PSO-based ANN with simulated annealing technique, Neurocomputing vol. 63: 527-533, 2005.
    • (2005) Neurocomputing , vol.63 , pp. 527-533
    • Da, Y.1    Xiurun, G.2
  • 11
    • 0037382121 scopus 로고    scopus 로고
    • Application of evolutionary neural network method in predicting pollutant levels in downtown area of Hong Kong
    • W. Z. Lu, H. Y. Fan, S. M. Lo, Application of evolutionary neural network method in predicting pollutant levels in downtown area of Hong Kong, Neurocomputing vol. 51: 387-400, 2003.
    • (2003) Neurocomputing , vol.51 , pp. 387-400
    • Lu, W.Z.1    Fan, H.Y.2    Lo, S.M.3
  • 14
    • 0026914911 scopus 로고
    • Mathematical model of the solidpolymer-electrolyte fuel cell
    • D. M. Bernardi, M. W. Verbrugge, Mathematical model of the solidpolymer-electrolyte fuel cell, J. Electrochem. Soc. 139 (9) 2477-2491, 1992.
    • (1992) J. Electrochem. Soc , vol.139 , Issue.9 , pp. 2477-2491
    • Bernardi, D.M.1    Verbrugge, M.W.2
  • 16
    • 0027593352 scopus 로고
    • Water and thermal management in solidpolymer electrolyte fuel cells
    • T. F. Fuller, J. Newman, Water and thermal management in solidpolymer electrolyte fuel cells, J. Electrochem. Soc. 140 (5): 1218-1225, 1993.
    • (1993) J. Electrochem. Soc , vol.140 , Issue.5 , pp. 1218-1225
    • Fuller, T.F.1    Newman, J.2
  • 17
    • 0027641089 scopus 로고
    • Water and heat management model for proton exchange-membrane fuel cells
    • T. V. Nguyen, R. E. White, Water and heat management model for proton exchange-membrane fuel cells, J. Electrochem. Soc. 140 (8): 2178-2186,1993.
    • (1993) J. Electrochem. Soc. , vol.140 , Issue.8 , pp. 2178-2186
    • Nguyen, T.V.1    White, R.E.2
  • 19
    • 0346332978 scopus 로고    scopus 로고
    • Three-dimensional analysis of transport and electrochemical reactions in polymer electrolyte fuel cells
    • S. Um, C. Y. Wang, Three-dimensional analysis of transport and electrochemical reactions in polymer electrolyte fuel cells, J. Power Sources 125 (1): 40-51, 2004.
    • (2004) J. Power Sources , vol.125 , Issue.1 , pp. 40-51
    • Um, S.1    Wang, C.Y.2
  • 20
    • 0029360298 scopus 로고
    • Modeling of proton exchange membrane fuel cell performance with an empirical equation
    • J. Kim, S. M. Lee, S. Srinivasan, C. E. Chamberlin, Modeling of proton exchange membrane fuel cell performance with an empirical equation, J. Electrochem. Soc. 142 (8): 2670-2674,1995.
    • (1995) J. Electrochem. Soc , vol.142 , Issue.8 , pp. 2670-2674
    • Kim, J.1    Lee, S.M.2    Srinivasan, S.3    Chamberlin, C.E.4
  • 21
    • 33748426624 scopus 로고    scopus 로고
    • Modeling a PEMFC by a support vector machine
    • Z.-D. Zhong, X.-J. Zhu, G.-Y. Cao, Modeling a PEMFC by a support vector machine, J. Power Sources 160: 293-298, 2006.
    • (2006) J. Power Sources , vol.160 , pp. 293-298
    • Zhong, Z.-D.1    Zhu, X.-J.2    Cao, G.-Y.3
  • 24
    • 84879015433 scopus 로고    scopus 로고
    • Parameter selection in particle swarm optimization
    • Y. Shi, R. C. Eberhart, Parameter selection in particle swarm optimization, Lect Notes Comput Sci 1447: 591-600, 1998.
    • (1998) Lect Notes Comput Sci , vol.1447 , pp. 591-600
    • Shi, Y.1    Eberhart, R.C.2
  • 25
    • 0037291006 scopus 로고    scopus 로고
    • A hybrid particle swarm optimization for distribution state estimation
    • S. Naka, T. Genji, T. Yura, Y. Fukuyama, A hybrid particle swarm optimization for distribution state estimation, IEEE Trans Power Syst 18: 60-68, 2003.
    • (2003) IEEE Trans Power Syst , vol.18 , pp. 60-68
    • Naka, S.1    Genji, T.2    Yura, T.3    Fukuyama, Y.4
  • 26
    • 0034430526 scopus 로고    scopus 로고
    • A particle swarm optimization for reactive power and voltage control considering voltage security assessment
    • H. Yoshida, K. Kawata, Y. Fukuyama, S. Takayama, Y. Nakanishi, A particle swarm optimization for reactive power and voltage control considering voltage security assessment, IEEE Trans Power Syst 15: 1232-1239, 2000.
    • (2000) IEEE Trans Power Syst , vol.15 , pp. 1232-1239
    • Yoshida, H.1    Kawata, K.2    Fukuyama, Y.3    Takayama, S.4    Nakanishi, Y.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.