-
1
-
-
84855281420
-
Repetitive elements may comprise over two-thirds of the human genome
-
Dec, Epub Dec 1, 2011
-
de Koning AP, Gu W, Castoe TA, Batzer MA, Pollock DD. Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet. Dec 2011;7(12):e1002384. Epub Dec 1, 2011.
-
(2011)
PLoS Genet
, vol.7
, Issue.12
-
-
de Koning, A.P.1
Gu, W.2
Castoe, T.A.3
Batzer, M.A.4
Pollock, D.D.5
-
2
-
-
70450202132
-
The B73 maize genome: Complexity, diversity, and dynamics
-
Nov 20
-
Schnable PS, Ware D, Fulton RS, et al. The B73 maize genome: complexity, diversity, and dynamics. Science. Nov 20, 2009;326(5956):1112-5.
-
(2009)
Science
, vol.326
, Issue.5956
, pp. 1112-1115
-
-
Schnable, P.S.1
Ware, D.2
Fulton, R.S.3
-
3
-
-
42349111552
-
A universal classification of eukaryotic transposable elements implemented in Repbase
-
May, author reply 414
-
Kapitonov VV, Jurka J. A universal classification of eukaryotic transposable elements implemented in Repbase. Nat Rev Genet. May 2008;9(5):411-2; author reply 414.
-
(2008)
Nat Rev Genet
, vol.9
, Issue.5
, pp. 411-412
-
-
Kapitonov, V.V.1
Jurka, J.2
-
4
-
-
36249023071
-
A unified classification system for eukaryotic transposable elements
-
Dec
-
Wicker T, Sabot F, Hua-Van A, et al. A unified classification system for eukaryotic transposable elements. Nat Rev Genet. Dec 2007;8(12):973-82.
-
(2007)
Nat Rev Genet
, vol.8
, Issue.12
, pp. 973-982
-
-
Wicker, T.1
Sabot, F.2
Hua-Van, A.3
-
5
-
-
78650525750
-
Transposable element insertions have strongly affected human evolution
-
Nov 16, Epub Nov 1, 2010
-
Britten RJ. Transposable element insertions have strongly affected human evolution. Proc Natl Acad Sci U S A. Nov 16, 2010;107(46):19945-8. Epub Nov 1, 2010.
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, Issue.46
, pp. 19945-19948
-
-
Britten, R.J.1
-
6
-
-
36549035839
-
Discovering and detecting transposable elementsin genome sequences
-
Nov, Epub Oct 10, 2007
-
Bergman CM, Quesneville H. Discovering and detecting transposable elementsin genome sequences. Brief Bioinform. Nov 2007;8(6):382-92. Epub Oct 10, 2007.
-
(2007)
Brief Bioinform
, vol.8
, Issue.6
, pp. 382-392
-
-
Bergman, C.M.1
Quesneville, H.2
-
7
-
-
40549086282
-
Computational prediction and molecular confirmation of Helitron transposons in the maize genome
-
Du C, Caronna J, He L, Dooner H. Computational prediction and molecular confirmation of Helitron transposons in the maize genome. BMC Genomics. 2008;9:51.
-
(2008)
BMC Genomics
, vol.9
, pp. 51
-
-
Du, C.1
Caronna, J.2
He, L.3
Dooner, H.4
-
8
-
-
39749179047
-
LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons
-
Ellinghaus D, Kurtz S, Willhoeft U. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinformatics. 2008;9:18.
-
(2008)
BMC Bioinformatics
, vol.9
, pp. 18
-
-
Ellinghaus, D.1
Kurtz, S.2
Willhoeft, U.3
-
9
-
-
0033066718
-
REPuter: Fast computation of maximal repeats in complete genomes
-
May
-
Kurtz S, Schleiermacher C. REPuter: fast computation of maximal repeats in complete genomes. Bioinformatics. May 1999;15(5):426-7.
-
(1999)
Bioinformatics
, vol.15
, Issue.5
, pp. 426-427
-
-
Kurtz, S.1
Schleiermacher, C.2
-
10
-
-
0036673472
-
Automated de novo identification of Repeat Sequence families in sequenced genomes
-
Bao Z, Eddy SR. Automated de novo identification of Repeat Sequence families in sequenced genomes. Genome Res. 2002;12(8):1269-76.
-
(2002)
Genome Res
, vol.12
, Issue.8
, pp. 1269-1276
-
-
Bao, Z.1
Eddy, S.R.2
-
11
-
-
6344289639
-
Inverted repeat structure of the human genome: The X-chromosome contains a preponderance of large, highly homologous inverted repeats that contain testes genes
-
Oct
-
Warburton PE, Giordano J, Cheung F, Gelfand Y, Benson G. Inverted repeat structure of the human genome: the X-chromosome contains a preponderance of large, highly homologous inverted repeats that contain testes genes. Genome Res. Oct 2004;14(10A):1861-9.
-
(2004)
Genome Res
, vol.14
, Issue.10 A
, pp. 1861-1869
-
-
Warburton, P.E.1
Giordano, J.2
Cheung, F.3
Gelfand, Y.4
Benson, G.5
-
12
-
-
0043123038
-
MAK, a computational tool kit for automated MITE analysis
-
Jul 1
-
Yang G, Hall TC. MAK, a computational tool kit for automated MITE analysis. Nucleic Acids Res. Jul 1, 2003;31(13):3659-65.
-
(2003)
Nucleic Acids Res
, vol.31
, Issue.13
, pp. 3659-3665
-
-
Yang, G.1
Hall, T.C.2
-
13
-
-
78650432054
-
MITE-Hunter: A program for discovering miniature inverted-repeat transposable elements from genomic sequences
-
Dec, Epub Sep 29, 2010
-
Han Y, Wessler SR. MITE-Hunter: a program for discovering miniature inverted-repeat transposable elements from genomic sequences. Nucleic Acids Res. Dec 2010;38(22):e199. Epub Sep 29, 2010.
-
(2010)
Nucleic Acids Res
, vol.38
, Issue.22
-
-
Han, Y.1
Wessler, S.R.2
-
14
-
-
62549105255
-
MUST: A system for identification of miniature inverted-repeat transposable elements and applications to Anabaena variabilis and Haloquadratum walsbyi
-
May 1, Epub Feb 10, 2009
-
Chen Y, Zhou F, Li G, Xu Y. MUST: a system for identification of miniature inverted-repeat transposable elements and applications to Anabaena variabilis and Haloquadratum walsbyi. Gene. May 1, 2009;436(1-2):1-7. Epub Feb 10, 2009.
-
(2009)
Gene
, vol.436
, Issue.1-2
, pp. 1-7
-
-
Chen, Y.1
Zhou, F.2
Li, G.3
Xu, Y.4
-
15
-
-
28944444049
-
Suffix-tree analyser (STAN): Looking for nucleotidic and peptidic patterns in chromosomes
-
Dec 15, Epub Oct 13, 2005
-
Nicolas J, Durand P, Ranchy G, Tempel S, Valin AS. Suffix-tree analyser (STAN): looking for nucleotidic and peptidic patterns in chromosomes. Bioinformatics. Dec 15, 2005;21(24):4408-10. Epub Oct 13, 2005.
-
(2005)
Bioinformatics
, vol.21
, Issue.24
, pp. 4408-4410
-
-
Nicolas, J.1
Durand, P.2
Ranchy, G.3
Tempel, S.4
Valin, A.S.5
-
16
-
-
0036900064
-
Genome-wide analysis of the Emigrant family of MITEs of Arabidopsis thaliana
-
Dec
-
Santiago N, Herráiz C, Goñi JR, Messeguer X, Casacuberta JM. Genome-wide analysis of the Emigrant family of MITEs of Arabidopsis thaliana. Mol Biol Evol. Dec 2002;19(12):2285-93.
-
(2002)
Mol Biol Evol
, vol.19
, Issue.12
, pp. 2285-2293
-
-
Santiago, N.1
Herráiz, C.2
Goñi, J.R.3
Messeguer, X.4
Casacuberta, J.M.5
-
17
-
-
0022422660
-
Nomenclature for incompletely specified bases in nucleic acid sequences: Recommendations 1984
-
May 10
-
Cornish-Bowden A. Nomenclature for incompletely specified bases in nucleic acid sequences: recommendations 1984. Nucleic Acids Res. May 10, 1985;13(9):3021-30.
-
(1985)
Nucleic Acids Res
, vol.13
, Issue.9
, pp. 3021-3030
-
-
Cornish-Bowden, A.1
-
18
-
-
38649116613
-
Diversity and structure of PIF/Harbinger-like elements in the genome of Medicago truncatula
-
Nov 9
-
Grzebelus D, Lasota S, Gambin T, Kucherov G, Gambin A. Diversity and structure of PIF/Harbinger-like elements in the genome of Medicago truncatula. BMC Genomics. Nov 9, 2007;8:409.
-
(2007)
BMC Genomics
, vol.8
, pp. 409
-
-
Grzebelus, D.1
Lasota, S.2
Gambin, T.3
Kucherov, G.4
Gambin, A.5
-
19
-
-
70350231372
-
Population dynamics of miniature inverted-repeat transposable elements (MITEs) in Medicago
-
Dec 15, Epub Jun 17, 2009
-
Grzebelus D, Gładysz M, Macko-Podgórni A, et al. Population dynamics of miniature inverted-repeat transposable elements (MITEs) in Medicago Gene. Dec 15, 2009;448(2):214-20. Epub Jun 17, 2009.
-
(2009)
Gene
, vol.448
, Issue.2
, pp. 214-220
-
-
Grzebelus, D.1
Gładysz, M.2
Macko-Podgórni, A.3
-
20
-
-
77954854627
-
Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data
-
Jul 15
-
Novák P, Neumann P, Macas J. Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinformatics. Jul 15, 2010;11:378.
-
(2010)
BMC Bioinformatics
, vol.11
, pp. 378
-
-
Novák, P.1
Neumann, P.2
Macas, J.3
-
21
-
-
0025183708
-
Basic local alignment search tool
-
Oct 5
-
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. Oct 5, 1990;215(3):403-10.
-
(1990)
J Mol Biol
, vol.215
, Issue.3
, pp. 403-410
-
-
Altschul, S.F.1
Gish, W.2
Miller, W.3
Myers, E.W.4
Lipman, D.J.5
-
22
-
-
1042307072
-
Transposon diversity in Arabidopsis thaliana
-
Jun 20
-
Le QH, Wright S, Yu Z, Bureau T. Transposon diversity in Arabidopsis thaliana. Proc Natl Acad Sci U S A. Jun 20, 2000;97(13):7376-81.
-
(2000)
Proc Natl Acad Sci U S A
, vol.97
, Issue.13
, pp. 7376-7381
-
-
Le, Q.H.1
Wright, S.2
Yu, Z.3
Bureau, T.4
-
23
-
-
23844525077
-
Repbase Update, a database of eukaryotic repetitive elements
-
Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J. Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res. 2005;110(1-4):462-7.
-
(2005)
Cytogenet Genome Res
, vol.110
, Issue.1-4
, pp. 462-467
-
-
Jurka, J.1
Kapitonov, V.V.2
Pavlicek, A.3
Klonowski, P.4
Kohany, O.5
Walichiewicz, J.6
-
24
-
-
56049109767
-
Different strategies to persist: The pogo-like Lemi1 transposon produces miniature inverted-repeat transposable elements or typical defective elements in different plant genomes
-
Sep, Epub Aug 30, 2008
-
Guermonprez H, Loot C, Casacuberta JM. Different strategies to persist: the pogo-like Lemi1 transposon produces miniature inverted-repeat transposable elements or typical defective elements in different plant genomes. Genetics. Sep 2008;180(1):83-92. Epub Aug 30, 2008.
-
(2008)
Genetics
, vol.180
, Issue.1
, pp. 83-92
-
-
Guermonprez, H.1
Loot, C.2
Casacuberta, J.M.3
|