-
1
-
-
84873198832
-
-
Ph.D. dissertation, Department of Computer Science, University of Helsinki, Report A-2010-2
-
W. Hämäläinen, "Efficient search for statistically significant dependency rules in binary data," Ph.D. dissertation, Department of Computer Science, University of Helsinki, 2010, Report A-2010-2.
-
(2010)
Efficient Search for Statistically Significant Dependency Rules in Binary Data
-
-
Hämäläinen, W.1
-
2
-
-
0027621699
-
Mining association rules between sets of items in large databases
-
ACM Press
-
R. Agrawal, T. Imielinski, and A. Swami, "Mining association rules between sets of items in large databases," in Proc. 1993 ACM SIGMOD Int. Conf. Management of Data. ACM Press, 1993, pp. 207-216.
-
(1993)
Proc. 1993 ACM SIGMOD Int. Conf. Management of Data
, pp. 207-216
-
-
Agrawal, R.1
Imielinski, T.2
Swami, A.3
-
3
-
-
14844340628
-
K-optimal rule discovery
-
G. Webb and S. Zhang, "K-optimal rule discovery," Data Mining and Knowledge Discovery, vol. 10, no. 1, pp. 39-79, 2005.
-
(2005)
Data Mining and Knowledge Discovery
, vol.10
, Issue.1
, pp. 39-79
-
-
Webb, G.1
Zhang, S.2
-
4
-
-
84864311304
-
Kingfisher: An efficient algorithm for searching for both positive and negative dependency rules with statistical significance measures
-
W. Hämäläinen, "Kingfisher: an efficient algorithm for searching for both positive and negative dependency rules with statistical significance measures," Knowledge and Information Systems, vol. 32, no. 2, pp. 383-414, 2012.
-
(2012)
Knowledge and Information Systems
, vol.32
, Issue.2
, pp. 383-414
-
-
Hämäläinen, W.1
-
5
-
-
70350660915
-
Correlated itemset mining in ROC space: A constraint programming approach
-
ACM Press
-
S. Nijssen, T. Guns, and L. D. Raedt, "Correlated itemset mining in ROC space: a constraint programming approach," in Proc. 15th ACM SIGKDD Conf. Knowledge Discovery and Data Mining (KDD'09). ACM Press, 2009, pp. 647-656.
-
(2009)
Proc. 15th ACM SIGKDD Conf. Knowledge Discovery and Data Mining (KDD'09)
, pp. 647-656
-
-
Nijssen, S.1
Guns, T.2
Raedt, L.D.3
-
6
-
-
33644650161
-
On optimal rule discovery
-
J. Li, "On optimal rule discovery," IEEE Transactions on Knowledge and Data Engineering, vol. 18, no. 4, pp. 460-471, 2006.
-
(2006)
IEEE Transactions on Knowledge and Data Engineering
, vol.18
, Issue.4
, pp. 460-471
-
-
Li, J.1
-
7
-
-
33745149432
-
A methodology for biologically relevant pattern discovery from gene expression data
-
ser. LNCS, vol. 3245 Springer
-
R. Pensa, J. Besson, and J.-F. Boulicaut, "A methodology for biologically relevant pattern discovery from gene expression data," in Discovery Science, ser. LNCS, vol. 3245. Springer, 2004, pp. 230-241.
-
(2004)
Discovery Science
, pp. 230-241
-
-
Pensa, R.1
Besson, J.2
Boulicaut, J.-F.3
-
8
-
-
84911977993
-
Discovering frequent closed itemsets for association rules
-
ser. LNCS, vol. 1540. Springer-Verlag
-
N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, "Discovering frequent closed itemsets for association rules," in Proc. 7th Int. Conf. Database Theory (ICDT'99), ser. LNCS, vol. 1540. Springer-Verlag, 1999, pp. 398-416.
-
(1999)
Proc. 7th Int. Conf. Database Theory (ICDT'99)
, pp. 398-416
-
-
Pasquier, N.1
Bastide, Y.2
Taouil, R.3
Lakhal, L.4
-
9
-
-
84864316959
-
-
Retrieved 10.2 2009
-
G. Webb, "MagnumOpus software," http://www.giwebb.com/index. html. Retrieved 10.2. 2009.
-
MagnumOpus Software
-
-
Webb, G.1
-
10
-
-
0001638299
-
The detection of partial association, i: The 2×2 case
-
M. Birch, "The detection of partial association, i: The 2×2 case," Journal of the Royal Statistical Society. Series B (Methodological), vol. 26, no. 2, pp. 313-324, 1964.
-
(1964)
Journal of the Royal Statistical Society. Series B (Methodological)
, vol.26
, Issue.2
, pp. 313-324
-
-
Birch, M.1
-
11
-
-
84873202332
-
-
Version 1.2 release date 8.8
-
W. Hämäläinen, "Kingfisher v1.2 (software for statistical dependency rule mining)," http://www.cs.uef.fi/~whamalai/ kingfisher.html Version 1.2 release date 8.8. 2012.
-
(2012)
-
-
Hämäläinen, W.1
-
12
-
-
0031270195
-
Mining generalized association rules
-
R. Srikant and R. Agrawal, "Mining generalized association rules," Future Generation Computer Systems, vol. 13, no. 2-3, pp. 161-180, 1997.
-
(1997)
Future Generation Computer Systems
, vol.13
, Issue.2-3
, pp. 161-180
-
-
Srikant, R.1
Agrawal, R.2
-
13
-
-
0035440199
-
Mining optimized support rules for numeric attributes
-
R. Rastogi and K. Shim, "Mining optimized support rules for numeric attributes," Information Systems, vol. 26, no. 6, pp. 425-444, 2001.
-
(2001)
Information Systems
, vol.26
, Issue.6
, pp. 425-444
-
-
Rastogi, R.1
Shim, K.2
-
14
-
-
0000559199
-
Interestingness-based interval merger for numeric association rules
-
AAAI Press
-
K. Wang, S. Hock, W. Tay, and B. Liu, "Interestingness-based interval merger for numeric association rules," in Proc. 4th Int. Conf. Knowledge Discovery and Data Mining. AAAI Press, 1998, pp. 121-127.
-
(1998)
Proc. 4th Int. Conf. Knowledge Discovery and Data Mining
, pp. 121-127
-
-
Wang, K.1
Hock, S.2
Tay, W.3
Liu, B.4
-
15
-
-
51149111835
-
Correlated pattern mining in quantitative databases
-
Y. Ke, J. Cheng, and W. Ng, "Correlated pattern mining in quantitative databases," ACM Transactions on Database Systems, vol. 33, no. 3, 2008.
-
(2008)
ACM Transactions on Database Systems
, vol.33
, Issue.3
-
-
Ke, Y.1
Cheng, J.2
Ng, W.3
-
16
-
-
68749120539
-
On subgroup discovery in numerical domains
-
ser. LNCS, vol. 5781. Springer
-
H. Grosskreutz and S. Rüping, "On subgroup discovery in numerical domains," in Machine Learning and Knowledge Discovery in Databases, Proc. ECML/PKDD 2009, Part I, ser. LNCS, vol. 5781. Springer, 2009, pp. 210-226.
-
(2009)
Machine Learning and Knowledge Discovery in Databases, Proc. ECML/PKDD 2009, Part i
, pp. 210-226
-
-
Grosskreutz, H.1
Rüping, S.2
-
17
-
-
33745130677
-
Relevancy in constraintbased subgroup discovery
-
ser. LNCS, vol. 3848. Springer
-
N. Lavrac and D. Gamberger, "Relevancy in constraintbased subgroup discovery," in Constraint-Based Mining and Inductive Databases, ser. LNCS, vol. 3848. Springer, 2004, pp. 243-266.
-
(2004)
Constraint-Based Mining and Inductive Databases
, pp. 243-266
-
-
Lavrac, N.1
Gamberger, D.2
|