메뉴 건너뛰기




Volumn 101, Issue 1, 2013, Pages 95-142

A computational learning theory of active object recognition under uncertainty

Author keywords

Active vision; Attention; Computational complexity of vision; Object recognition; Visual search

Indexed keywords

3D SCENES; ACTIVE VISION; ATTENTION; COMPUTATIONAL CONSTRAINTS; COMPUTATIONAL LEARNING THEORY; COMPUTATIONAL RESOURCES; INPUT NOISE; LEARNING STRATEGY; LOW-LEVEL FEATURES; OBJECT CLASS; OBJECT DETECTION; OBJECT LOCALIZATION; REPRESENTATION CLASS; SCENE REPRESENTATION; SEARCH COSTS; SEARCH REGION; SELECTIVE ATTENTION; THEORETICAL RESULT; UPPER BOUND; VC-DIMENSION; VISION PROBLEMS; VISUAL SEARCH;

EID: 84873151163     PISSN: 09205691     EISSN: 15731405     Source Type: Journal    
DOI: 10.1007/s11263-012-0551-6     Document Type: Article
Times cited : (42)

References (66)
  • 2
    • 52049109642 scopus 로고    scopus 로고
    • Active vision for door localization and door opening using playbot: A computer controlled wheelchair for people with mobility impairments
    • Andreopoulos, A., & Tsotsos, J. K. (2008). Active vision for door localization and door opening using playbot: A computer controlled wheelchair for people with mobility impairments. In Proc. 5th Canadian conference on computer and robot vision.
    • (2008) Proc. 5th Canadian Conference on Computer and Robot Vision
    • Andreopoulos, A.1    Tsotsos, J.K.2
  • 4
    • 81855191845 scopus 로고    scopus 로고
    • On sensor bias in experimental methods for comparing interest point, saliency and recognition algorithms
    • 10.1109/TPAMI.2011.91
    • Andreopoulos, A., & Tsotsos, J. K. (2012). On sensor bias in experimental methods for comparing interest point, saliency and recognition algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(1), 110-126.
    • (2012) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.34 , Issue.1 , pp. 110-126
    • Andreopoulos, A.1    Tsotsos, J.K.2
  • 6
    • 0000492326 scopus 로고
    • Learning from noisy examples
    • Angluin, D., & Laird, P. (1988). Learning from noisy examples. Machine Learning, 2(4), 343-370.
    • (1988) Machine Learning , vol.2 , Issue.4 , pp. 343-370
    • Angluin, D.1    Laird, P.2
  • 8
    • 0026105924 scopus 로고
    • Animate vision
    • 10.1016/0004-3702(91)90080-4
    • Ballard, D. (1991). Animate vision. Artificial Intelligence, 48, 57-86.
    • (1991) Artificial Intelligence , vol.48 , pp. 57-86
    • Ballard, D.1
  • 9
    • 0001088773 scopus 로고
    • Relational descriptions in picture processing
    • Barrow, H., & Popplestone, R. (1971). Relational descriptions in picture processing. Machine Intelligence, 6, 377-396.
    • (1971) Machine Intelligence , vol.6 , pp. 377-396
    • Barrow, H.1    Popplestone, R.2
  • 10
    • 0038453192 scopus 로고    scopus 로고
    • Rademacher and Gaussian complexities: Risk bounds and structural results
    • 1984026
    • Bartlett, P. L., & Mendelson, S. (2002). Rademacher and Gaussian complexities: risk bounds and structural results. Journal of Machine Learning Research, 3, 463-482.
    • (2002) Journal of Machine Learning Research , vol.3 , pp. 463-482
    • Bartlett, P.L.1    Mendelson, S.2
  • 11
    • 0030165580 scopus 로고    scopus 로고
    • Fat-shattering and the learnability of real-valued functions
    • 0858.68076 10.1006/jcss.1996.0033 1408000
    • Bartlett, P. L., Long, P. M., & Williamson, R. C. (1996). Fat-shattering and the learnability of real-valued functions. Journal of Computer and System Sciences, 52, 434-452.
    • (1996) Journal of Computer and System Sciences , vol.52 , pp. 434-452
    • Bartlett, P.L.1    Long, P.M.2    Williamson, R.C.3
  • 12
    • 0001160588 scopus 로고
    • What size net gives valid generalization?
    • 10.1162/neco.1989.1.1.151
    • Baum, E., & Haussler, D. (1989). What size net gives valid generalization? Neural Computation, 1(1), 151-160.
    • (1989) Neural Computation , vol.1 , Issue.1 , pp. 151-160
    • Baum, E.1    Haussler, D.2
  • 13
    • 0032156420 scopus 로고    scopus 로고
    • Localization vs. identification of semi-algebraic sets
    • 0912.68167 10.1023/A:1007447530834
    • Ben-David, S., & Lindenbaum, M. (1998). Localization vs. identification of semi-algebraic sets. Machine Learning, 32, 207-224.
    • (1998) Machine Learning , vol.32 , pp. 207-224
    • Ben-David, S.1    Lindenbaum, M.2
  • 14
    • 0023322501 scopus 로고
    • Recognition-by-components: A theory of human image understanding
    • 10.1037/0033-295X.94.2.115
    • Biederman, I. (1987). Recognition-by-components: a theory of human image understanding. Psychological Review, 94, 115-147.
    • (1987) Psychological Review , vol.94 , pp. 115-147
    • Biederman, I.1
  • 19
    • 62649143331 scopus 로고    scopus 로고
    • Saliency, attention and visual search: An information theoretic approach
    • 10.1167/9.3.5
    • Bruce, N. D., & Tsotsos, J. K. (2009). Saliency, attention and visual search: an information theoretic approach. Journal of Vision, 9(3), 1-24.
    • (2009) Journal of Vision , vol.9 , Issue.3 , pp. 1-24
    • Bruce, N.D.1    Tsotsos, J.K.2
  • 20
    • 0035386823 scopus 로고    scopus 로고
    • Active recognition: Looking for differences
    • 1002.68571 10.1023/A:1011135513777
    • Callari, F., & Ferrie, F. (2001). Active recognition: looking for differences. International Journal of Computer Vision, 43(3), 189-204.
    • (2001) International Journal of Computer Vision , vol.43 , Issue.3 , pp. 189-204
    • Callari, F.1    Ferrie, F.2
  • 24
    • 34250688313 scopus 로고    scopus 로고
    • Integrating active mobile robot object recognition and SLAM in natural environments
    • Ekvall, S., Jensfelt, P., & Kragic, D. (2006). Integrating active mobile robot object recognition and SLAM in natural environments. In Proc. Intelligent robots and systems.
    • (2006) Proc. Intelligent Robots and Systems
    • Ekvall, S.1    Jensfelt, P.2    Kragic, D.3
  • 26
    • 0019152630 scopus 로고
    • Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
    • 0419.92009 10.1007/BF00344251
    • Fukushima, K. (1980). Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, 36(4), 193-202.
    • (1980) Biological Cybernetics , vol.36 , Issue.4 , pp. 193-202
    • Fukushima, K.1
  • 31
    • 0026221780 scopus 로고
    • The combinatorics of heuristic search termination for object recognition in cluttered environments
    • 10.1109/34.93810
    • Grimson, W. E. L. (1991). The combinatorics of heuristic search termination for object recognition in cluttered environments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13, 920-935.
    • (1991) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.13 , pp. 920-935
    • Grimson, W.E.L.1
  • 32
    • 84961365499 scopus 로고
    • Contour enhancement, short-term memory, and constancies in reverberating neural networks
    • 0281.92005 359862
    • Grossberg, S. (1973). Contour enhancement, short-term memory, and constancies in reverberating neural networks. Studies in Applied Mathematics, 52, 213-257.
    • (1973) Studies in Applied Mathematics , vol.52 , pp. 213-257
    • Grossberg, S.1
  • 34
    • 0024057652 scopus 로고
    • Automatic generation of object recognition programs
    • 10.1109/5.5972
    • Ikeuchi, K., & Kanade, T. (1988). Automatic generation of object recognition programs. Proceedings of the IEEE, 76(8), 1016-1035.
    • (1988) Proceedings of the IEEE , vol.76 , Issue.8 , pp. 1016-1035
    • Ikeuchi, K.1    Kanade, T.2
  • 38
    • 33646881517 scopus 로고    scopus 로고
    • Efficient discriminant viewpoint selection for active Bayesian recognition
    • 10.1007/s11263-005-4436-9
    • Laporte, C., & Arbel, T. (2006). Efficient discriminant viewpoint selection for active Bayesian recognition. International Journal of Computer Vision, 68(3), 267-287.
    • (2006) International Journal of Computer Vision , vol.68 , Issue.3 , pp. 267-287
    • Laporte, C.1    Arbel, T.2
  • 39
    • 0031276158 scopus 로고    scopus 로고
    • An integrated model for evaluating the amount of data required for reliable recognition
    • 10.1109/34.632984
    • Lindenbaum, M. (1997). An integrated model for evaluating the amount of data required for reliable recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(11), 1251-1264.
    • (1997) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.19 , Issue.11 , pp. 1251-1264
    • Lindenbaum, M.1
  • 42
    • 0037399538 scopus 로고    scopus 로고
    • Pac-Bayesian stochastic model selection
    • 1056.68122 10.1023/A:1021840411064
    • McAllester, D. A. (2003). Pac-Bayesian stochastic model selection. Machine Learning, 51, 5-21.
    • (2003) Machine Learning , vol.51 , pp. 5-21
    • McAllester, D.A.1
  • 45
    • 15244352522 scopus 로고    scopus 로고
    • Optimal eye movement strategies in visual search
    • 10.1038/nature03390
    • Najemnik, J., & Geisler, W. S. (2005). Optimal eye movement strategies in visual search. Nature, 434, 387-391.
    • (2005) Nature , vol.434 , pp. 387-391
    • Najemnik, J.1    Geisler, W.S.2
  • 46
    • 9644289372 scopus 로고    scopus 로고
    • Modeling the influence of task on attention
    • 10.1016/j.visres.2004.07.042
    • Navalpakkam, V., & Itti, L. (2005). Modeling the influence of task on attention. Vision Research, 45(2), 205-231.
    • (2005) Vision Research , vol.45 , Issue.2 , pp. 205-231
    • Navalpakkam, V.1    Itti, L.2
  • 47
    • 0001902802 scopus 로고
    • Description and recognition of curved objects
    • 0344.68026 10.1016/0004-3702(77)90006-6
    • Nevatia, R., & Binford, T. (1977). Description and recognition of curved objects. Artificial Intelligence, 8, 77-98.
    • (1977) Artificial Intelligence , vol.8 , pp. 77-98
    • Nevatia, R.1    Binford, T.2
  • 48
    • 0028407533 scopus 로고
    • Control of selective perception using Bayes nets and decision theory
    • 10.1007/BF01421202
    • Rimey, R. D., & Brown, C. M. (1994). Control of selective perception using Bayes nets and decision theory. International Journal of Computer Vision, 12(2/3), 173-207.
    • (1994) International Journal of Computer Vision , vol.12 , Issue.23 , pp. 173-207
    • Rimey, R.D.1    Brown, C.M.2
  • 49
    • 11144273669 scopus 로고
    • The perceptron: A probabilistic model for information storage and organization in the brain
    • 10.1037/h0042519 1529895
    • Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386-408.
    • (1958) Psychological Review , vol.65 , Issue.6 , pp. 386-408
    • Rosenblatt, F.1
  • 54
    • 0029895137 scopus 로고    scopus 로고
    • Speed of processing in the human visual system
    • 10.1038/381520a0
    • Thorpe, S., Fize, D., & Marlot, C. (1996). Speed of processing in the human visual system. Nature, 381(6582), 520-522.
    • (1996) Nature , vol.381 , Issue.6582 , pp. 520-522
    • Thorpe, S.1    Fize, D.2    Marlot, C.3
  • 55
    • 0038341540 scopus 로고
    • Analyzing vision at the complexity level
    • 10.1017/S0140525X00079577
    • Tsotsos, J. K. (1990). Analyzing vision at the complexity level. Behavioral and Brain Sciences, 13(3), 423-445.
    • (1990) Behavioral and Brain Sciences , vol.13 , Issue.3 , pp. 423-445
    • Tsotsos, J.K.1
  • 56
    • 0026461494 scopus 로고
    • On the relative complexity of active vs. passive visual search
    • 10.1007/BF00128132
    • Tsotsos, J. K. (1992). On the relative complexity of active vs. passive visual search. International Journal of Computer Vision, 7(2), 127-141.
    • (1992) International Journal of Computer Vision , vol.7 , Issue.2 , pp. 127-141
    • Tsotsos, J.K.1
  • 61
    • 0021518106 scopus 로고
    • A theory of the learnable
    • 0587.68077 10.1145/1968.1972
    • Valiant, L. (1984b). A theory of the learnable. Communications of the ACM, 27(11), 1134-1142.
    • (1984) Communications of the ACM , vol.27 , Issue.11 , pp. 1134-1142
    • Valiant, L.1
  • 63
    • 0026608134 scopus 로고
    • The information capacity of visual attention
    • 10.1016/0042-6989(92)90040-P
    • Verghese, P., & Pelli, D. (1992). The information capacity of visual attention. Vision Research, 32(5), 983-995.
    • (1992) Vision Research , vol.32 , Issue.5 , pp. 983-995
    • Verghese, P.1    Pelli, D.2
  • 64
    • 0028406908 scopus 로고
    • Using intermediate objects to improve the efficiency of visual search
    • 10.1007/BF01421203
    • Wixson, L. E., & Ballard, D. H. (1994). Using intermediate objects to improve the efficiency of visual search. International Journal of Computer Vision, 12(2/3), 209-230.
    • (1994) International Journal of Computer Vision , vol.12 , Issue.23 , pp. 209-230
    • Wixson, L.E.1    Ballard, D.H.2
  • 65
    • 0033078820 scopus 로고    scopus 로고
    • Sensor planning for 3D object search
    • 10.1006/cviu.1998.0736
    • Ye, Y., & Tsotsos, J. (1999). Sensor planning for 3D object search. Computer Vision and Image Understanding, 73(2), 145-168.
    • (1999) Computer Vision and Image Understanding , vol.73 , Issue.2 , pp. 145-168
    • Ye, Y.1    Tsotsos, J.2
  • 66
    • 0035510142 scopus 로고    scopus 로고
    • A complexity level analysis of the sensor planning task for object search
    • 10.1111/0824-7935.00166 1868264
    • Ye, Y., & Tsotsos, J. (2001). A complexity level analysis of the sensor planning task for object search. Computational Intelligence, 17(4), 605-620.
    • (2001) Computational Intelligence , vol.17 , Issue.4 , pp. 605-620
    • Ye, Y.1    Tsotsos, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.