메뉴 건너뛰기




Volumn 32, Issue 2, 2013, Pages 167-179

A meta-learning framework for bankruptcy prediction

Author keywords

bankruptcy prediction; machine learning; meta learning; stacked generalization

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLASSIFICATION (OF INFORMATION); DECISION TREES; LEARNING SYSTEMS;

EID: 84873092298     PISSN: 02776693     EISSN: 1099131X     Source Type: Journal    
DOI: 10.1002/for.1264     Document Type: Article
Times cited : (30)

References (29)
  • 1
    • 41149115573 scopus 로고    scopus 로고
    • Bankruptcy forecasting: An empirical comparison of AdaBoost and neural networks
    • Alfaro E, García N, Gámez M, Elizondo D,. 2008. Bankruptcy forecasting: an empirical comparison of AdaBoost and neural networks. Decision Support Systems 45: 110-122.
    • (2008) Decision Support Systems , vol.45 , pp. 110-122
    • Alfaro, E.1    García, N.2    Gámez, M.3    Elizondo, D.4
  • 2
    • 0035391093 scopus 로고    scopus 로고
    • Bankruptcy prediction for credit risk using neural networks: A survey and new results
    • Atiya AF,. 2001. Bankruptcy prediction for credit risk using neural networks: a survey and new results. IEEE Transactions on Neural Networks 12 (4): 929-935.
    • (2001) IEEE Transactions on Neural Networks , vol.12 , Issue.4 , pp. 929-935
    • Atiya, A.F.1
  • 8
    • 17844388095 scopus 로고    scopus 로고
    • Hybrid mining approach in the design of credit scoring models
    • Hsieh N-C,. 2005. Hybrid mining approach in the design of credit scoring models. Expert Systems with Applications 28: 655-665.
    • (2005) Expert Systems with Applications , vol.28 , pp. 655-665
    • Hsieh, N.-C.1
  • 10
    • 33846314346 scopus 로고    scopus 로고
    • Bankruptcy prediction in banks and firms via statistical and intelligent techniques: A review
    • Kumar PR, Ravi V,. 2007. Bankruptcy prediction in banks and firms via statistical and intelligent techniques: a review. European Journal of Operational Research 180: 1-28.
    • (2007) European Journal of Operational Research , vol.180 , pp. 1-28
    • Kumar, P.R.1    Ravi, V.2
  • 11
    • 16244365542 scopus 로고    scopus 로고
    • A comparison of supervised and unsupervised neural networks in predicting bankruptcy of Korean firms
    • Lee K, Booth D, Alam P,. 2005. A comparison of supervised and unsupervised neural networks in predicting bankruptcy of Korean firms. Expert Systems with Applications 29: 1-16.
    • (2005) Expert Systems with Applications , vol.29 , pp. 1-16
    • Lee, K.1    Booth, D.2    Alam, P.3
  • 12
    • 26444554549 scopus 로고    scopus 로고
    • Mining the customer credit using classification and regression tree and multivariate adaptive regression splines
    • Lee T-S, Chiu C-C, Chou Y-C, Lu C-J,. 2006. Mining the customer credit using classification and regression tree and multivariate adaptive regression splines. Computational Statistics and Data Analysis 50: 1113-1130.
    • (2006) Computational Statistics and Data Analysis , vol.50 , pp. 1113-1130
    • Lee, T.-S.1    Chiu, C.-C.2    Chou, Y.-C.3    Lu, C.-J.4
  • 14
    • 0036027367 scopus 로고    scopus 로고
    • Differentiating between good credits and bad credits using neuro-fuzzy systems
    • Malhotra R, Malhotra DK,. 2002. Differentiating between good credits and bad credits using neuro-fuzzy systems. European Journal of Operational Research 136: 190-211.
    • (2002) European Journal of Operational Research , vol.136 , pp. 190-211
    • Malhotra, R.1    Malhotra, D.K.2
  • 15
    • 0037117685 scopus 로고    scopus 로고
    • Genetic programming and rough sets: A hybrid approach to bankruptcy classification
    • McKee TE, Lensberg T,. 2002. Genetic programming and rough sets: a hybrid approach to bankruptcy classification. European Journal of Operational Research 138: 436-451.
    • (2002) European Journal of Operational Research , vol.138 , pp. 436-451
    • McKee, T.E.1    Lensberg, T.2
  • 18
    • 0034123868 scopus 로고    scopus 로고
    • Neural networks in business: Techniques and applications for the operations researcher
    • Smith KA, Gupta JND,. 2000. Neural networks in business: techniques and applications for the operations researcher. Computers and Operations Research 27: 1023-1044.
    • (2000) Computers and Operations Research , vol.27 , pp. 1023-1044
    • Smith, K.A.1    Gupta, J.N.D.2
  • 20
    • 84873093098 scopus 로고    scopus 로고
    • A review of bankruptcy prediction models: The machine learning perspective
    • a. In, Peters H. Vogel M. (eds). Nova Science: Hauppauge, NY.
    • Tsai C-F,. 2008 a. A review of bankruptcy prediction models: the machine learning perspective. In Machine Learning Research Progress, Peters H, Vogel M, (eds). Nova Science: Hauppauge, NY.
    • (2008) Machine Learning Research Progress
    • Tsai, C.-F.1
  • 21
    • 49549093161 scopus 로고    scopus 로고
    • Financial decision support using neural networks and support vector machines
    • b.
    • Tsai C-F,. 2008 b. Financial decision support using neural networks and support vector machines. Expert Systems 25 (4): 380-393.
    • (2008) Expert Systems , vol.25 , Issue.4 , pp. 380-393
    • Tsai, C.-F.1
  • 22
    • 59349101361 scopus 로고    scopus 로고
    • Feature selection in bankruptcy prediction
    • Tsai C-F,. 2009. Feature selection in bankruptcy prediction. Knowledge-Based Systems 22 (2): 120-127.
    • (2009) Knowledge-Based Systems , vol.22 , Issue.2 , pp. 120-127
    • Tsai, C.-F.1
  • 23
    • 38649113538 scopus 로고    scopus 로고
    • Using neural network ensembles for bankruptcy prediction and credit scoring
    • Tsai C-F, Wu J-W,. 2008. Using neural network ensembles for bankruptcy prediction and credit scoring. Expert Systems with Applications 34 (4): 2639-2649.
    • (2008) Expert Systems with Applications , vol.34 , Issue.4 , pp. 2639-2649
    • Tsai, C.-F.1    Wu, J.-W.2
  • 24
    • 0034118581 scopus 로고    scopus 로고
    • Neural network credit scoring models
    • West D,. 2000. Neural network credit scoring models. Computers and Operations Research 27 (11/12): 1131-1152.
    • (2000) Computers and Operations Research , vol.27 , Issue.1112 , pp. 1131-1152
    • West, D.1
  • 25
    • 13544268431 scopus 로고    scopus 로고
    • Neural network ensemble strategies for financial decision applications
    • West D, Dellana S, Qian J,. 2005. Neural network ensemble strategies for financial decision applications. Computers and Operations Research 32: 2543-2559.
    • (2005) Computers and Operations Research , vol.32 , pp. 2543-2559
    • West, D.1    Dellana, S.2    Qian, J.3
  • 26
    • 0035546592 scopus 로고    scopus 로고
    • Default probabilities in a corporate bank portfolio: A logistic model approach
    • Westgaard S, Wijst NVD,. 2001. Default probabilities in a corporate bank portfolio: a logistic model approach. European Journal of Operational Research 135: 338-349.
    • (2001) European Journal of Operational Research , vol.135 , pp. 338-349
    • Westgaard, S.1    Wijst, N.V.D.2
  • 27
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert DH,. 1992. Stacked generalization. Neural Networks 5 (2): 241-259.
    • (1992) Neural Networks , vol.5 , Issue.2 , pp. 241-259
    • Wolpert, D.H.1
  • 28
    • 0008400478 scopus 로고    scopus 로고
    • Neural network applications in finance: A review and analysis of literature (1990-1996)
    • Wong BK, Selvi Y,. 1998. Neural network applications in finance: a review and analysis of literature (1990-1996). Information and Management 34: 129-139.
    • (1998) Information and Management , vol.34 , pp. 129-139
    • Wong, B.K.1    Selvi, Y.2
  • 29
    • 33751068050 scopus 로고    scopus 로고
    • A real-valued genetic algorithm to optimize the parameters of support vector machine for predicting bankruptcy
    • Wu C-H, Tzeng G-H, Goo Y-J, Fang W-C,. 2007. A real-valued genetic algorithm to optimize the parameters of support vector machine for predicting bankruptcy. Expert Systems with Applications 32 (2): 397-408.
    • (2007) Expert Systems with Applications , vol.32 , Issue.2 , pp. 397-408
    • Wu, C.-H.1    Tzeng, G.-H.2    Goo, Y.-J.3    Fang, W.-C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.