메뉴 건너뛰기




Volumn 40, Issue 6, 2013, Pages 1981-1992

Forecasting seasonal time series with computational intelligence: On recent methods and the potential of their combinations

Author keywords

Computational intelligence; Fuzzy rules; Genetic algorithm; Neural networks; Support vector machine; Time series

Indexed keywords

COMPUTATIONAL INTELLIGENCE METHODS; COMPUTATIONAL INTELLIGENCE TECHNIQUES; DECISION MAKERS; EVOLUTIONARY ARTIFICIAL NEURAL NETWORKS; HYBRID MODEL; LINGUISTIC FUZZY RULES; MULTI-STEP; NOVEL METHODS; ORGANIZATIONAL DECISION MAKING; SEASONAL TIME SERIES; TIME SERIES FORECASTING;

EID: 84872836165     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2012.10.001     Document Type: Article
Times cited : (51)

References (67)
  • 1
    • 63849099651 scopus 로고    scopus 로고
    • A new Bayesian formulation for Holt's exponential smoothing
    • R. Andrawis, and A. Atiya A new Bayesian formulation for Holt's exponential smoothing Journal of Forecasting 28 3 2009 218 234
    • (2009) Journal of Forecasting , vol.28 , Issue.3 , pp. 218-234
    • Andrawis, R.1    Atiya, A.2
  • 4
    • 0002006114 scopus 로고
    • Error measures for generalizing about forecasting methods: Empirical comparisons
    • J.S. Armstrong, and F. Collopy Error measures for generalizing about forecasting methods: Empirical comparisons International Journal of Forecasting 8 1992 69 80
    • (1992) International Journal of Forecasting , vol.8 , pp. 69-80
    • Armstrong, J.S.1    Collopy, F.2
  • 5
    • 34848835530 scopus 로고    scopus 로고
    • Smooth transition autoregressive models and fuzzy rule-based systems: Functional equivalence and consequences
    • DOI 10.1016/j.fss.2007.03.021, PII S0165011407001583
    • J. Aznarte, J. Benítez, and J. Castro Smooth transition autoregressive models and fuzzy rule-based systems: Functional equivalence and consequences Fuzzy Sets and Systems 158 2007 2734 2745 (Pubitemid 47513202)
    • (2007) Fuzzy Sets and Systems , vol.158 , Issue.24 , pp. 2734-2745
    • Aznarte, M.J.L.1    Manuel Benitez, J.2    Luis Castro, J.3
  • 8
    • 25844503576 scopus 로고    scopus 로고
    • Learning rule base in linguistic expert systems
    • DOI 10.1007/s00500-002-0174-x
    • R. Bělohlávek, and V. Novák Learning rule base of the linguistic expert systems Soft Computing 7 2002 79 88 (Pubitemid 36002912)
    • (2002) Soft Computing , vol.7 , Issue.2 , pp. 79-88
    • Belohlavek, R.1    Novak, V.2
  • 9
    • 22544477846 scopus 로고    scopus 로고
    • Interpretability of linguistic variables: A formal account
    • U. Bodenhofer, and P. Bauer Interpretability of linguistic variables: A formal account Kybernetika 2 2005 227 248 (Pubitemid 41019968)
    • (2005) Kybernetika , vol.41 , Issue.2 , pp. 227-248
    • Bodenhofer, U.1    Bauer, P.2
  • 12
    • 0346250790 scopus 로고    scopus 로고
    • Practical selection of SVM parameters and noise estimation for SVM regression
    • DOI 10.1016/S0893-6080(03)00169-2
    • V. Cherkassy, and Y. Ma Practical selection of SVM parameters and noise estimation for SVM regression Neural Networks 17 1 2004 113 126 (Pubitemid 38019003)
    • (2004) Neural Networks , vol.17 , Issue.1 , pp. 113-126
    • Cherkassky, V.1    Ma, Y.2
  • 13
    • 34249753618 scopus 로고
    • Support vector networks
    • C. Cortes, and V. Vapnik Support vector networks Machine Learning 20 3 1995 273 297
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 16
    • 3142742672 scopus 로고    scopus 로고
    • Evolving time series forecasting ARMA models
    • P. Cortez, M. Rocha, and J. Neves Evolving time series forecasting ARMA models Journal of Heuristics 10 4 2004 415 429
    • (2004) Journal of Heuristics , vol.10 , Issue.4 , pp. 415-429
    • Cortez, P.1    Rocha, M.2    Neves, J.3
  • 18
    • 79956357674 scopus 로고    scopus 로고
    • Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction
    • S.F. Crone, M. Hibon, and K. Nikolopoulos Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction International Journal of Forecasting 27 3 2011 635 660
    • (2011) International Journal of Forecasting , vol.27 , Issue.3 , pp. 635-660
    • Crone, S.F.1    Hibon, M.2    Nikolopoulos, K.3
  • 19
    • 77952552084 scopus 로고    scopus 로고
    • Feature selection for time series prediction - A combined filter and wrapper approach for neural networks
    • S.F. Crone, and N. Kourentzes Feature selection for time series prediction-a combined filter and wrapper approach for neural networks Neurocomputing 73 2010 1923 1936
    • (2010) Neurocomputing , vol.73 , pp. 1923-1936
    • Crone, S.F.1    Kourentzes, N.2
  • 20
    • 79959467311 scopus 로고    scopus 로고
    • Naive support vector regression and multilayer perceptron benchmarks for the 2010 neural network grand competition (NNGC) on time series prediction
    • IEEE Barcelona, Spain
    • S.F. Crone, and N. Kourentzes Naive support vector regression and multilayer perceptron benchmarks for the 2010 neural network grand competition (NNGC) on time series prediction Proceedings of 2010 IEEE international joint conference on neural networks (IJCNN 2010) 2010 IEEE Barcelona, Spain 2878 2885
    • (2010) Proceedings of 2010 IEEE International Joint Conference on Neural Networks (IJCNN 2010) , pp. 2878-2885
    • Crone, S.F.1    Kourentzes, N.2
  • 22
    • 0030577310 scopus 로고    scopus 로고
    • What are fuzzy rules and how to use them
    • PII S0165011496000668
    • D. Dubois, and H. Prade What are fuzzy rules and how to use them Fuzzy Sets and Systems 84 1996 169 185 (Pubitemid 126667519)
    • (1996) Fuzzy Sets and Systems , vol.84 , Issue.2 , pp. 169-185
    • Dubois, D.1    Prade, H.2
  • 23
    • 0042592937 scopus 로고    scopus 로고
    • The software package LFLC 2000-its specificity, recent and perspective applications
    • A. Dvořák, H. Habiballa, V. Novák, and V. Pavliska The software package LFLC 2000-its specificity, recent and perspective applications Computers in Industry 51 2003 269 280
    • (2003) Computers in Industry , vol.51 , pp. 269-280
    • Dvořák, A.1    Habiballa, H.2    Novák, V.3    Pavliska, V.4
  • 28
    • 0000783575 scopus 로고
    • The upstart algorithm: A method for constructing and training feedforward neural networks
    • M. Frean The upstart algorithm: A method for constructing and training feedforward neural networks Neural Computation 2 1990 198 209
    • (1990) Neural Computation , vol.2 , pp. 198-209
    • Frean, M.1
  • 29
    • 0017714604 scopus 로고
    • Oscillation and chaos in physiological control systems
    • L. Glass, and M. Mackey Oscillation and chaos in physiological control systems Science 197 1977 287 289 (Pubitemid 8130447)
    • (1977) Science , vol.197 , Issue.4300 , pp. 287-289
    • Mackey, M.C.1    Glass, L.2
  • 32
    • 55949088772 scopus 로고    scopus 로고
    • Model optimizing and feature selecting for support vector regression in time series forecasting
    • W. He, Z. Wang, and H. Jiang Model optimizing and feature selecting for support vector regression in time series forecasting Neurocomputing 72 1-3 2008 600 611
    • (2008) Neurocomputing , vol.72 , Issue.13 , pp. 600-611
    • He, W.1    Wang, Z.2    Jiang, H.3
  • 34
    • 33749517168 scopus 로고    scopus 로고
    • Another look at measures of forecast accuracy
    • DOI 10.1016/j.ijforecast.2006.03.001, PII S0169207006000239
    • R.J. Hyndman, and A. Koehler Another look at measures of forecast accuracy International Journal of Forecasting 22 4 2006 679 688 (Pubitemid 44524717)
    • (2006) International Journal of Forecasting , vol.22 , Issue.4 , pp. 679-688
    • Hyndman, R.J.1    Koehler, A.B.2
  • 35
    • 0024137490 scopus 로고
    • Increased rates of convergence through learning rate adaptation
    • R.A. Jacobs Increased rates of convergence through learning rate adaptation Neural Networks 1 1988 295 307
    • (1988) Neural Networks , vol.1 , pp. 295-307
    • Jacobs, R.A.1
  • 36
    • 0036530967 scopus 로고    scopus 로고
    • DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction
    • DOI 10.1109/91.995117, PII S106367060202965X
    • N. Kasabov, and Q. Song Denfis: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction IEEE Transactions on Fuzzy Systems 10 2002 144 154 (Pubitemid 34554860)
    • (2002) IEEE Transactions on Fuzzy Systems , vol.10 , Issue.2 , pp. 144-154
    • Kasabov, N.K.1    Song, Q.2
  • 38
    • 0034187691 scopus 로고    scopus 로고
    • Data strip mining for the virtual design of pharmaceuticals with neural networks
    • R. Kewley, M. Embrechts, and C. Breneman Data strip mining for the virtual design of pharmaceuticals with neural networks IEEE Transactions on Neural Networks 11 3 2000 668 679
    • (2000) IEEE Transactions on Neural Networks , vol.11 , Issue.3 , pp. 668-679
    • Kewley, R.1    Embrechts, M.2    Breneman, C.3
  • 39
    • 84872838538 scopus 로고    scopus 로고
    • Lancaster University Management School Working Paper, The Department of Management Science, Lancaster University. URL
    • Kourentzes, N., & Crone, S. F. (2010). Advances in forecasting with artificial neural networks. Lancaster University Management School Working Paper, The Department of Management Science, Lancaster University. URL .
    • (2010) Advances in Forecasting with Artificial Neural Networks
    • Kourentzes, N.1    Crone, S.F.2
  • 40
    • 11244351634 scopus 로고    scopus 로고
    • An approach for on-line extraction of fuzzy rules using a self-organising fuzzy neural network
    • DOI 10.1016/j.fss.2004.03.001, PII S0165011404000843
    • G. Leng, T. McGinnity, and G. Prasad An approach for on-line extraction of fuzzy rules using a self-organising fuzzy neural network Fuzzy Sets and Systems 150 2005 211 243 (Pubitemid 40056019)
    • (2005) Fuzzy Sets and Systems , vol.150 , Issue.2 , pp. 211-243
    • Leng, G.1    McGinnity, T.M.2    Prasad, G.3
  • 44
    • 51249092374 scopus 로고    scopus 로고
    • A comprehensive theory of trichotomous evaluative linguistic expressions
    • V. Novák A comprehensive theory of trichotomous evaluative linguistic expressions Fuzzy Sets and Systems 159 22 2008 2939 2969
    • (2008) Fuzzy Sets and Systems , vol.159 , Issue.22 , pp. 2939-2969
    • Novák, V.1
  • 45
    • 0003083251 scopus 로고
    • Linguistically oriented fuzzy logic controller and its design
    • V. Novák Linguistically oriented fuzzy logic controller and its design International Journal of Approximate Reasoning 12 3-4 1995 263 277
    • (1995) International Journal of Approximate Reasoning , vol.12 , Issue.34 , pp. 263-277
    • Novák, V.1
  • 46
    • 33644980293 scopus 로고    scopus 로고
    • Logical structure of fuzzy IF-THEN rules
    • DOI 10.1016/j.fss.2006.02.011, PII S0165011406000935
    • V. Novák, and S. Lehmke Logical structure of fuzzy IF-THEN rules Fuzzy Sets and Systems 157 15 2006 2003 2029 (Pubitemid 43831202)
    • (2006) Fuzzy Sets and Systems , vol.157 , Issue.15 , pp. 2003-2029
    • Novak, V.1    Lehmke, S.2
  • 49
    • 32444431831 scopus 로고    scopus 로고
    • The application of antigenic search techniques to time series forecasting
    • DOI 10.1145/1068009.1068065, GECCO 2005 - Genetic and Evolutionary Computation Conference
    • Nunn, I., White, T. (2005). The application of antigenic search techniques to time series forecasting. In GECCO (pp. 353-360). (Pubitemid 43226311)
    • (2005) GECCO 2005 - Genetic and Evolutionary Computation Conference , pp. 353-360
    • Nunn, I.1    White, T.2
  • 51
    • 79959422165 scopus 로고    scopus 로고
    • Time series forecasting by evolving artificial neural networks using genetic algorithms and differential evolution
    • Peralta, J., Xiaodong Li, Gutierrez, G., & Sanchis, A. (2010). Time series forecasting by evolving artificial neural networks using genetic algorithms and differential evolution. In IJCNN.
    • (2010) IJCNN
    • Peralta, J.1    Li, X.2    Gutierrez, G.3    Sanchis, A.4
  • 52
    • 33644989946 scopus 로고    scopus 로고
    • Fuzzy transforms: Theory and applications
    • I. Perfilieva Fuzzy transforms: Theory and applications Fuzzy Sets and Systems 157 2006 993 1023
    • (2006) Fuzzy Sets and Systems , vol.157 , pp. 993-1023
    • Perfilieva, I.1
  • 53
    • 33845433837 scopus 로고    scopus 로고
    • Fuzzy transforms in removing noise
    • DOI 10.1007/3-540-31182-3-19, Computational Intelligence, Theory and Applications: International Conference 8th Fuzzy Days in Dortmund, Germany, Sept. 29-Oct. 01, 2004 Proceedings
    • I. Perfilieva, and R. Valášek Fuzzy transforms in removing noise B. Reusch, Computational intelligence, theory and applications, advances in soft computing 2005 Springer Berlin 221 230 (Pubitemid 44895693)
    • (2006) Advances in Soft Computing , vol.33 , pp. 221-230
    • Perfilieva, I.1    Valasek, R.2
  • 54
    • 72149119713 scopus 로고    scopus 로고
    • Autoregressive time series prediction by means of fuzzy inference systems using nonparametric residual variance estimation
    • F.M. Pouzols, A. Lendasse, and A.B. Barros Autoregressive time series prediction by means of fuzzy inference systems using nonparametric residual variance estimation Fuzzy Sets and Systems 161 2010 471 497
    • (2010) Fuzzy Sets and Systems , vol.161 , pp. 471-497
    • Pouzols, F.M.1    Lendasse, A.2    Barros, A.B.3
  • 55
    • 67649695959 scopus 로고    scopus 로고
    • Mining the past to determine the future: Comments
    • S. Price Mining the past to determine the future: Comments International Journal of Forecasting 25 3 2009 452 455
    • (2009) International Journal of Forecasting , vol.25 , Issue.3 , pp. 452-455
    • Price, S.1
  • 57
    • 33645070541 scopus 로고    scopus 로고
    • Sequential adaptive fuzzy inference system (safis) for nonlinear system identification and prediction
    • H.J. Rong, N. Sundararajan, G.B. Huang, and P. Saratchandran Sequential adaptive fuzzy inference system (safis) for nonlinear system identification and prediction Fuzzy Sets and Systems 157 2006 1260 1275
    • (2006) Fuzzy Sets and Systems , vol.157 , pp. 1260-1275
    • Rong, H.J.1    Sundararajan, N.2    Huang, G.B.3    Saratchandran, P.4
  • 58
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • DOI 10.1023/B:STCO.0000035301.49549.88
    • A. Smola, and B. Schölkopf A tutorial on support vector regression Statistics and Computing 14 2004 199 222 (Pubitemid 39063488)
    • (2004) Statistics and Computing , vol.14 , Issue.3 , pp. 199-222
    • Smola, A.J.1    Scholkopf, B.2
  • 60
    • 60749101765 scopus 로고    scopus 로고
    • A neural network approach to the fuzzy transform
    • M. Štěpnička, and O. Polakovič A neural network approach to the fuzzy transform Fuzzy sets and Systems 160 2009 1037 1047
    • (2009) Fuzzy Sets and Systems , vol.160 , pp. 1037-1047
    • Štěpnička, M.1    Polakovič, O.2
  • 61
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • T. Takagi, and M. Sugeno Fuzzy identification of systems and its applications to modeling and control IEEE Transactions on Systems, Man and Cybernetics 15 1985 116 132
    • (1985) IEEE Transactions on Systems, Man and Cybernetics , vol.15 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 62
    • 0035255165 scopus 로고    scopus 로고
    • Fuzzy ARIMA model for forecasting the foreign exchange market
    • DOI 10.1016/S0165-0114(98)00286-3
    • F.M. Tseng, G.H. Tzeng, Yu, and B.J.C. Yuan Fuzzy ARIMA model for forecasting the foreign exchange market Fuzzy Sets and Systems 118 2001 9 19 (Pubitemid 32028666)
    • (2001) Fuzzy Sets and Systems , vol.118 , Issue.1 , pp. 9-19
    • Tseng, F.-M.1    Tzeng, G.-H.2    Yu, H.-C.3    Yuan, B.J.C.4
  • 63
    • 0345688978 scopus 로고    scopus 로고
    • Determination of the spread parameter in the Gaussian kernel for classification and regression
    • DOI 10.1016/S0925-2312(02)00632-X, PII S092523120200632X
    • W. Wang, Z. Xu, W. Lu, and X. Zhang Determination of the spread parameter in the Gaussian kernel for classification and regression Neurocomputing 55 3 2003 643 663 (Pubitemid 37455478)
    • (2003) Neurocomputing , vol.55 , Issue.3-4 , pp. 643-663
    • Wang, W.1    Xu, Z.2    Lu, W.3    Zhang, X.4
  • 65
    • 0016458950 scopus 로고
    • The concept of a linguistic variable and its application to approximate reasoning I, II, III
    • 301-357, 43-80
    • L.A. Zadeh The concept of a linguistic variable and its application to approximate reasoning I, II, III Information Sciences 8-9 1975 199 257 301-357, 43-80
    • (1975) Information Sciences , vol.8-9 , pp. 199-257
    • Zadeh, L.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.