-
2
-
-
0000705894
-
The adaptive nature of human categorization
-
Anderson, J. R. (1991). The adaptive nature of human categorization. Psychological Review, 98(3), 409-429.
-
(1991)
Psychological Review
, vol.98
, Issue.3
, pp. 409-429
-
-
Anderson, J.R.1
-
4
-
-
77950343112
-
A discriminative model for semi-supervised learning
-
19:-19:
-
Balcan, M.-F., & Blum, A. (2010). A discriminative model for semi-supervised learning. Journal of the ACM, 57(3), 19:1-19:46
-
(2010)
Journal of the ACM
, vol.57
, Issue.3
, pp. 1-46
-
-
Balcan, M.-F.1
Blum, A.2
-
5
-
-
0030093374
-
Unsupervised concept learning and value systematicity: A complex whole aids learning the parts
-
Billman, D., & Knutson, J. (1996). Unsupervised concept learning and value systematicity: A complex whole aids learning the parts. Journal of Experimental Psychology: Learning Memory and Cognition, 22(2), 458-475.
-
(1996)
Journal of Experimental Psychology: Learning Memory and Cognition
, vol.22
, Issue.2
, pp. 458-475
-
-
Billman, D.1
Knutson, J.2
-
8
-
-
41549144249
-
Optimization techniques for semi-supervised support vector machines
-
Feb)
-
Chapelle, O., Sindhwani, V., & Keerthi, S. S. (2008). Optimization techniques for semi-supervised support vector machines. Journal of Machine Learning Research, 9(Feb), 203-233.
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 203-233
-
-
Chapelle, O.1
Sindhwani, V.2
Keerthi, S.S.3
-
9
-
-
33749252873
-
-
Cambridge, MA: MIT Press.
-
Chapelle, O., Schölkopf, B., & Zien, A. (Eds.) (2006). Semi-supervised learning. Cambridge, MA: MIT Press.
-
(2006)
Semi-supervised learning
-
-
Chapelle, O.1
Schölkopf, B.2
Zien, A.3
-
10
-
-
0002629270
-
Maximum likelihood from incomplete data via the EM algorithm
-
Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39(1), 1-38.
-
(1977)
Journal of the Royal Statistical Society. Series B (Methodological)
, vol.39
, Issue.1
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
11
-
-
0021404078
-
Induction of category distributions: A framework for classification learning
-
Fried, L. S., & Holyoak, K. J. (1984). Induction of category distributions: A framework for classification learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 10(2), 234-257.
-
(1984)
Journal of Experimental Psychology: Learning, Memory, and Cognition
, vol.10
, Issue.2
, pp. 234-257
-
-
Fried, L.S.1
Holyoak, K.J.2
-
12
-
-
85161973601
-
Humans learn using manifolds, reluctantly
-
J. Lafferty (Ed.), Red Hook, NY: Curran Associates, Inc.
-
Gibson, B. R., Zhu, X., Rogers, T. T., Kalish, C.W., & Harrison, J. (2010). Humans learn using manifolds, reluctantly. In J. Lafferty (Ed.), Advances in neural information processing systems 23, vol. 24, (pp. 730-738). Red Hook, NY: Curran Associates, Inc.
-
(2010)
Advances in neural information processing systems 23
, vol.24
, pp. 730-738
-
-
Gibson, B.R.1
Zhu, X.2
Rogers, T.T.3
Kalish, C.W.4
Harrison, J.5
-
14
-
-
50949114162
-
Unifying rational models of categorization via the hierarchical dirichlet process
-
D. S. McNamara & J. G. Trafton (Ed.), Austin, TX: Cognitive Science Society.
-
Griffiths, T. L., Canini, K. R., Sanborn, A. N., & Navarro, D. J. (2007). Unifying rational models of categorization via the hierarchical dirichlet process. In D. S. McNamara & J. G. Trafton (Ed.), Proceedings of the 29th Annual Cognitive Science Society (pp. 323-328). Austin, TX: Cognitive Science Society.
-
(2007)
Proceedings of the 29th Annual Cognitive Science Society
, pp. 323-328
-
-
Griffiths, T.L.1
Canini, K.R.2
Sanborn, A.N.3
Navarro, D.J.4
-
15
-
-
84872776630
-
Nonparametric bayesian models of categorization
-
E. M. Pothos & A. J. Wills (Eds.), Cambridge, UK: Cambridge University Press.
-
Griffiths, T. L., Sanborn, A. N., Canini, K. R., Navarro, D. J., & Tenenbaum, J. B. (2011). Nonparametric bayesian models of categorization. In E. M. Pothos & A. J. Wills (Eds.), Formal approaches in categorization (pp. 173-198). Cambridge, UK: Cambridge University Press.
-
(2011)
Formal approaches in categorization
, pp. 173-198
-
-
Griffiths, T.L.1
Sanborn, A.N.2
Canini, K.R.3
Navarro, D.J.4
Tenenbaum, J.B.5
-
16
-
-
0038673077
-
Towards a unified account of supervised and unsupervised category learning
-
Gureckis, T. M., & Love, B. C. (2003). Towards a unified account of supervised and unsupervised category learning. Journal of experimental and theoretical artificial intelligence, 15(1), 1-24.
-
(2003)
Journal of experimental and theoretical artificial intelligence
, vol.15
, Issue.1
, pp. 1-24
-
-
Gureckis, T.M.1
Love, B.C.2
-
17
-
-
0002044136
-
Prototype models of concept representation
-
In I. Van Mechelen, J. Hampton, R. S. Michalski, amp; P. Theuns (Eds.), San Diego, CA: Academic Press.
-
Hampton, J. A. (1993). Prototype models of concept representation. In I. Van Mechelen, J. Hampton, R. S. Michalski, & P. Theuns (Eds.), Categories and concepts: Theoretical views and inductive data analysis (pp. 67-95). San Diego, CA: Academic Press.
-
(1993)
Categories and concepts: Theoretical views and inductive data analysis
, pp. 67-95
-
-
Hampton, J.A.1
-
18
-
-
0343408338
-
"Schema abstraction" in a multiple-trace memory model
-
Hintzman, D. L. (1986). "Schema abstraction" in a multiple-trace memory model. Psychological Review, 93(4), 411-428.
-
(1986)
Psychological Review
, vol.93
, Issue.4
, pp. 411-428
-
-
Hintzman, D.L.1
-
19
-
-
0001938951
-
Transductive inference for text classification using support vector machines
-
In I. Bratko & S. Dzeroski (Eds.), ICML 1999), San Francisco, CA: Morgan Kaufmann.
-
Joachims, T. (1999). Transductive inference for text classification using support vector machines. In I. Bratko & S. Dzeroski (Eds.), Proceedings of the 16th international conference on machine learning (ICML 1999) (pp. 200-209). San Francisco, CA: Morgan Kaufmann.
-
(1999)
Proceedings of the 16th international conference on machine learning
, pp. 200-209
-
-
Joachims, T.1
-
20
-
-
79955916625
-
Can semi-supervised learning explain incorrect beliefs about categories?
-
Kalish, C. W., Rogers, T. T., Lang, J., & Zhu, X. (2011). Can semi-supervised learning explain incorrect beliefs about categories? Cognition, 120(1), 106-118.
-
(2011)
Cognition
, vol.120
, Issue.1
, pp. 106-118
-
-
Kalish, C.W.1
Rogers, T.T.2
Lang, J.3
Zhu, X.4
-
21
-
-
0026477904
-
Alcove: An exemplar-based connectionist model of category learning
-
Kruschke, J. (1992). Alcove: An exemplar-based connectionist model of category learning. Psychological Review, 99(1), 22-44.
-
(1992)
Psychological Review
, vol.99
, Issue.1
, pp. 22-44
-
-
Kruschke, J.1
-
22
-
-
78049527893
-
Semi-supervised learning via Gaussian processes
-
L. K. Saul, Y. Weiss, amp; L. Bottou (Eds.), Cambridge, MA: MIT Press.
-
Lawrence, N. D., & Jordan, M. I. (2005). Semi-supervised learning via Gaussian processes. In L. K. Saul, Y. Weiss, & L. Bottou (Eds.), Advances in neural information processing systems 17 (pp. 753-760). Cambridge, MA: MIT Press.
-
(2005)
Advances in neural information processing systems 17
, pp. 753-760
-
-
Lawrence, N.D.1
Jordan, M.I.2
-
23
-
-
0038646126
-
Comparing supervised and unsupervised category learning
-
Love, B. C. (2002). Comparing supervised and unsupervised category learning. Psychonomic Bulletin and Review, 9(4), 829-835.
-
(2002)
Psychonomic Bulletin and Review
, vol.9
, Issue.4
, pp. 829-835
-
-
Love, B.C.1
-
24
-
-
1942539715
-
SUSTAIN: A network model of category learning
-
Love, B. C., Medin, D., & Gureckis, T. M. (2004). SUSTAIN: A network model of category learning. Psychological Review, 111(2), 309-332.
-
(2004)
Psychological Review
, vol.111
, Issue.2
, pp. 309-332
-
-
Love, B.C.1
Medin, D.2
Gureckis, T.M.3
-
25
-
-
84872793108
-
AClass: An online algorithm for generative classification
-
M. Meila and X. Shen (Eds.), Brookline, MA: Microtome Publishing.
-
Mansinghka, V. K., Roy, D. M., Rifkin, R., & Tenenbaum, J. (2007). AClass: An online algorithm for generative classification. In M. Meila and X. Shen (Eds.), Journal of Machine Learning Research - Proceedings Track, vol. 2 (pp. 315-322). Brookline, MA: Microtome Publishing.
-
(2007)
Journal of Machine Learning Research - Proceedings Track, vol. 2
, pp. 315-322
-
-
Mansinghka, V.K.1
Roy, D.M.2
Rifkin, R.3
Tenenbaum, J.4
-
26
-
-
0342973074
-
Context theory of classification learning
-
Medin, D., & Schaffer, M. (1978). Context theory of classification learning. Psychological Review; Psychological Review, 85(3), 207.
-
(1978)
Psychological Review; Psychological Review
, vol.85
, Issue.3
, pp. 207
-
-
Medin, D.1
Schaffer, M.2
-
27
-
-
80053124042
-
Prototype models of categorization: Basic formulation, predictions, and limitations
-
E. M. Pothos & A. J. Wills (Eds.), Cambridge, UK: Cambridge University Press.
-
Minda, J. P., & Smith, J. D. (2011). Prototype models of categorization: Basic formulation, predictions, and limitations. In E. M. Pothos & A. J. Wills (Eds.), Formal approaches in categorization (pp. 40-64). Cambridge, UK: Cambridge University Press.
-
(2011)
Formal approaches in categorization
, pp. 40-64
-
-
Minda, J.P.1
Smith, J.D.2
-
28
-
-
0002973060
-
Basic-level superiority in picture categorization
-
Murphy, G. L., & Smith, E. E. (1982). Basic-level superiority in picture categorization. Journal of Verbal Learning and Verbal Behavior, 21(1), 1-20.
-
(1982)
Journal of Verbal Learning and Verbal Behavior
, vol.21
, Issue.1
, pp. 1-20
-
-
Murphy, G.L.1
Smith, E.E.2
-
31
-
-
84872812279
-
-
Markov chain sampling methods for dirichlet process mixture models (Tech. Rep. No. 9815). Department of Statistics, University of Toronto.
-
Neal, R. M. (1998). Markov chain sampling methods for dirichlet process mixture models (Tech. Rep. No. 9815). Department of Statistics, University of Toronto.
-
(1998)
-
-
Neal, R.M.1
-
32
-
-
0031112464
-
An exemplar-based random-walk model of speeded classification
-
Nosofksy, R. M., & Palmeri, T. J. (1997). An exemplar-based random-walk model of speeded classification. Psychological Review, 104, 266-300.
-
(1997)
Psychological Review
, vol.104
, pp. 266-300
-
-
Nosofksy, R.M.1
Palmeri, T.J.2
-
33
-
-
0021117327
-
Choice, similarity and the context theory of classification
-
Nosofsky, R. M. (1984). Choice, similarity and the context theory of classification. Journal of experimental psychology: Learning, memory and cognition, 10(1), 104-114.
-
(1984)
Journal of experimental psychology: Learning, memory and cognition
, vol.10
, Issue.1
, pp. 104-114
-
-
Nosofsky, R.M.1
-
34
-
-
0022319635
-
Overall similarity and the identification of separable-dimension stimuli: A choice model analysis
-
Nosofsky, R. M. (1985). Overall similarity and the identification of separable-dimension stimuli: A choice model analysis. Perception and Psychophysics, 38(5), 415-432.
-
(1985)
Perception and Psychophysics
, vol.38
, Issue.5
, pp. 415-432
-
-
Nosofsky, R.M.1
-
35
-
-
0022686961
-
Attention, similarity, and the identification-categorization relationship
-
Nosofsky, R. M. (1986). Attention, similarity, and the identification-categorization relationship. Journal of Experimental Psychology: General, 115(1), 39-57.
-
(1986)
Journal of Experimental Psychology: General
, vol.115
, Issue.1
, pp. 39-57
-
-
Nosofsky, R.M.1
-
36
-
-
0023174102
-
Attention and learning processes in the identification and categorization of integral stimuli
-
Nosofsky, R. M. (1987). Attention and learning processes in the identification and categorization of integral stimuli. Journal of Experimental Psychology: Learning, Memory and Cognition, 13(1), 87-108.
-
(1987)
Journal of Experimental Psychology: Learning, Memory and Cognition
, vol.13
, Issue.1
, pp. 87-108
-
-
Nosofsky, R.M.1
-
37
-
-
84970122725
-
The relation between the rational model and the context model of categorization
-
Nosofsky, R. M. (1991). The relation between the rational model and the context model of categorization. Psychological Science, 2(6), 416-421.
-
(1991)
Psychological Science
, vol.2
, Issue.6
, pp. 416-421
-
-
Nosofsky, R.M.1
-
38
-
-
84872766738
-
The generalized context model: An exemplar model of classification
-
In E. M. Pothos & A. J. Wills (Eds.), Cambridge, UK: Cambridge University Press.
-
Nosofsky, R. M. (2011). The generalized context model: An exemplar model of classification. In E. M. Pothos & A. J. Wills (Eds.), Formal approaches in categorization (pp. 18-39). Cambridge, UK: Cambridge University Press.
-
(2011)
Formal approaches in categorization
, pp. 18-39
-
-
Nosofsky, R.M.1
-
39
-
-
0141440622
-
Learning about categories in the absence of training: Profound amnesia and the relationship between perceptual categorization and recognition memory
-
Palmeri, T. J., & Flanery, M. A. (1999). Learning about categories in the absence of training: Profound amnesia and the relationship between perceptual categorization and recognition memory. Psychological Science, 10, 526-530.
-
(1999)
Psychological Science
, vol.10
, pp. 526-530
-
-
Palmeri, T.J.1
Flanery, M.A.2
-
40
-
-
0038735754
-
Memory systems and perceptual categorization
-
B. H. Ross (Ed.), San Diego: Academic Press.
-
Palmeri, T. J., & Flanery, M. A. (2002). Memory systems and perceptual categorization. In B. H. Ross (Ed.), The psychology of learning and motivation: Advances in research and theory, vol. 41, (pp. 141-189). San Diego: Academic Press.
-
(2002)
The psychology of learning and motivation: Advances in research and theory
, vol.41
, pp. 141-189
-
-
Palmeri, T.J.1
Flanery, M.A.2
-
41
-
-
0014313849
-
On the genesis of abstract ideas
-
Posner, M., & Keele, S. W. (1968). On the genesis of abstract ideas. Journal of Experimental Psychology, 77(3), 353-363.
-
(1968)
Journal of Experimental Psychology
, vol.77
, Issue.3
, pp. 353-363
-
-
Posner, M.1
Keele, S.W.2
-
42
-
-
0036080372
-
A simplicity principle in unsupervised human categorization
-
Pothos, E., & Chater, N. (2002). A simplicity principle in unsupervised human categorization. Cognitive Science, 26(3), 303-343.
-
(2002)
Cognitive Science
, vol.26
, Issue.3
, pp. 303-343
-
-
Pothos, E.1
Chater, N.2
-
43
-
-
84872806755
-
Semi-supervised learning is observed in a speeded but not an unspeeded 2D categorization task
-
S. Ohlsson and R. Catrambone (Eds.), Austin, TX: Cognitive Science Society.
-
Rogers, T. T., Kalish, C. W., Gibson, B. R., Harrison, J., & Zhu, X. (2010). Semi-supervised learning is observed in a speeded but not an unspeeded 2D categorization task. In S. Ohlsson and R. Catrambone (Eds.), Proceedings of the 32nd annual conference of the cognitive science society (pp. 2320-2325). Austin, TX: Cognitive Science Society.
-
(2010)
Proceedings of the 32nd annual conference of the cognitive science society
, pp. 2320-2325
-
-
Rogers, T.T.1
Kalish, C.W.2
Gibson, B.R.3
Harrison, J.4
Zhu, X.5
-
44
-
-
34248936100
-
Basic objects in natural categories
-
Rosch, E., Mervis, C. B., Gray, D. W., Johnson, D. M., & Boyes-Braem, P. (1976). Basic objects in natural categories. Cognitive psychology, 8(3), 382-439.
-
(1976)
Cognitive psychology
, vol.8
, Issue.3
, pp. 382-439
-
-
Rosch, E.1
Mervis, C.B.2
Gray, D.W.3
Johnson, D.M.4
Boyes-Braem, P.5
-
45
-
-
50849100617
-
A more rational model of categorization
-
R. Sun (Ed.), Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
-
Sanborn, A. N., Griffiths, T. L., & Navarro, D. J. (2006). A more rational model of categorization. In R. Sun (Ed.), Proceedings of the 28th annual conference of the cognitive science society (pp. 761-731). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
-
(2006)
Proceedings of the 28th annual conference of the cognitive science society
, pp. 761-731
-
-
Sanborn, A.N.1
Griffiths, T.L.2
Navarro, D.J.3
-
46
-
-
0002833972
-
Discrimination and generalization in identification and classification: Comment on nosofsky
-
Shepard, R. N. (1986). Discrimination and generalization in identification and classification: Comment on nosofsky. Journal of Experimental Psychology: General, 115, 58-61.
-
(1986)
Journal of Experimental Psychology: General
, vol.115
, pp. 58-61
-
-
Shepard, R.N.1
-
47
-
-
0001976708
-
Integrality versus separability of stimulus dimensions: From an early convergence of evidence to a proposed theoretical basis
-
In G. R. Lockhead & J. R. Pomerantz (Eds.), Washington, DC: American Psychological Association.
-
Shepard, R. N. (1991). Integrality versus separability of stimulus dimensions: From an early convergence of evidence to a proposed theoretical basis. In G. R. Lockhead & J. R. Pomerantz (Eds.), The perception of structure: Essays in honor of Wendell R. Garner (pp. 53-71). Washington, DC: American Psychological Association.
-
(1991)
The perception of structure: Essays in honor of Wendell R. Garner
, pp. 53-71
-
-
Shepard, R.N.1
-
49
-
-
85047673990
-
Distinguishing prototype-based and exemplar-based processes in dot-pattern category learning
-
Smith, J. D., & Minda, J. P. (2002). Distinguishing prototype-based and exemplar-based processes in dot-pattern category learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28(4), 800.
-
(2002)
Journal of Experimental Psychology: Learning, Memory, and Cognition
, vol.28
, Issue.4
, pp. 800
-
-
Smith, J.D.1
Minda, J.P.2
-
50
-
-
78650737313
-
Rapid efficient coding of correlated complex acoustic properties
-
R. Schekman (Ed.), Washington, DC: National Academy of Sciences.
-
Stilp, C. E., Rogers, T. T., & Kluender, K. R. (2010). Rapid efficient coding of correlated complex acoustic properties. In R. Schekman (Ed.), Proceedings of the national academy of sciences, vol. 107, (pp. 21914-21919). Washington, DC: National Academy of Sciences.
-
(2010)
Proceedings of the national academy of sciences
, vol.107
, pp. 21914-21919
-
-
Stilp, C.E.1
Rogers, T.T.2
Kluender, K.R.3
-
51
-
-
0004883118
-
Autoclass - a bayesian approach to classification
-
J. Skilling & S. Sibisi (Eds.), Dordrecht, the Netherlands: Kluwer Academic Publishers.
-
Stutz, J., & Cheeseman, P. (1996). Autoclass - a bayesian approach to classification. In J. Skilling & S. Sibisi (Eds.), Maximum entropy and bayesian methods (pp. 117-126). Dordrecht, the Netherlands: Kluwer Academic Publishers.
-
(1996)
Maximum entropy and bayesian methods
, pp. 117-126
-
-
Stutz, J.1
Cheeseman, P.2
-
52
-
-
0032112199
-
Image-based object recognition in man, monkey and machine
-
Tarr, M. J., & Bulthoff, H. H. (1998). Image-based object recognition in man, monkey and machine. Cognition, 67, 1-20.
-
(1998)
Cognition
, vol.67
, pp. 1-20
-
-
Tarr, M.J.1
Bulthoff, H.H.2
-
53
-
-
77956217715
-
Dirichlet processes
-
In C. Sammut and G. I. Webb (Eds.), New York: Springer.
-
Teh, Y. W. (2010). Dirichlet processes. In C. Sammut and G. I. Webb (Eds.), Encyclopedia of machine learning (pp. 280-287). New York: Springer.
-
(2010)
Encyclopedia of machine learning
, pp. 280-287
-
-
Teh, Y.W.1
-
54
-
-
33746260413
-
Theory-based Bayesian models of inductive learning and reasoning
-
Tenenbaum, J. B., Griffiths, T. L., & Kemp, C. (2006). Theory-based Bayesian models of inductive learning and reasoning. Trends in Cognitive Science, 10(7), 309-318.
-
(2006)
Trends in Cognitive Science
, vol.10
, Issue.7
, pp. 309-318
-
-
Tenenbaum, J.B.1
Griffiths, T.L.2
Kemp, C.3
-
55
-
-
64749109194
-
Semisupervised category learning: The impact of feedback in learning the information-integration task
-
Vandist, K., De Schryver, M., & Rosseel, Y. (2009). Semisupervised category learning: The impact of feedback in learning the information-integration task. Attention, Perception, & Psychophysics, 71(2), 328-341.
-
(2009)
Attention, Perception, & Psychophysics
, vol.71
, Issue.2
, pp. 328-341
-
-
Vandist, K.1
De Schryver, M.2
Rosseel, Y.3
-
56
-
-
41349112246
-
A varying abstraction model for categorization
-
B. G. Bara, L. Barsalou & M. Bucciarelli (Eds.), Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
-
Vanpaemel, W., Storms, G., & Ons, B. (2005). A varying abstraction model for categorization. In B. G. Bara, L. Barsalou & M. Bucciarelli (Eds.), Proceedings of the 27th annual conference of the cognitive science society (pp. 2277-2282). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
-
(2005)
Proceedings of the 27th annual conference of the cognitive science society
, pp. 2277-2282
-
-
Vanpaemel, W.1
Storms, G.2
Ons, B.3
-
58
-
-
2642558848
-
What attributes guide the allocation of visual attention and how do they do it?
-
Wolfe, J. M., & Horowitz, T. S. (2004). What attributes guide the allocation of visual attention and how do they do it? Nature Reviews Neuroscience, 5, 1-7.
-
(2004)
Nature Reviews Neuroscience
, vol.5
, pp. 1-7
-
-
Wolfe, J.M.1
Horowitz, T.S.2
-
59
-
-
38149078047
-
A high-distortion enhancement effect in the prototype-learning paradigm: Dramatic effects of category learning during test
-
Zaki, S. R., & Nosofsky, R. M. (2007). A high-distortion enhancement effect in the prototype-learning paradigm: Dramatic effects of category learning during test. Memory & Cognition, 35, 2088-2096.
-
(2007)
Memory & Cognition
, vol.35
, pp. 2088-2096
-
-
Zaki, S.R.1
Nosofsky, R.M.2
-
60
-
-
77956519100
-
Cognitive models of test-item effects in human category learning
-
J. Fürnkranz and T. Joachims (Eds.), Haifa, Israel: Omnipress.
-
Zhu, X., Gibson, B. R., Jun, K., Rogers, T. T., Harrison, J., & Kalish, C. (2010). Cognitive models of test-item effects in human category learning. In J. Fürnkranz and T. Joachims (Eds.), The 27th international conference on machine learning (ICML-10) (pp. 1247-1254). Haifa, Israel: Omnipress.
-
(2010)
The 27th international conference on machine learning (ICML-10)
, pp. 1247-1254
-
-
Zhu, X.1
Gibson, B.R.2
Jun, K.3
Rogers, T.T.4
Harrison, J.5
Kalish, C.6
-
61
-
-
80055035640
-
Co-Training as a human collaboration policy
-
W. Burgard and D. Roth, Eds.), Menlo Park, CA: The AAAI Press.
-
Zhu, X., Gibson, B. R., & Rogers, T. T. (2011). Co-Training as a human collaboration policy. In W. Burgard and D. Roth, (Eds.), The 25th conference on artificial intelligence (AAAI-11) (pp. 852-857). Menlo Park, CA: The AAAI Press.
-
(2011)
The 25th conference on artificial intelligence (AAAI-11)
, pp. 852-857
-
-
Zhu, X.1
Gibson, B.R.2
Rogers, T.T.3
-
62
-
-
67650272548
-
-
Synthesis Lectures on Artificial Intelligence and Machine Learning, Morgan & Claypool.
-
Zhu, X., & Goldberg, A. B. (2009). Introduction to semi-supervised learning. Synthesis Lectures on Artificial Intelligence and Machine Learning, 3(1), 1-130, Morgan & Claypool.
-
(2009)
Introduction to semi-supervised learning
, vol.3
, Issue.1
, pp. 1-130
-
-
Zhu, X.1
Goldberg, A.B.2
-
63
-
-
36348995973
-
Humans perform semi-supervised classification too
-
R. C. Holte and A. Howe (Eds.), Menlo Park, CA: The AAAI Press.
-
Zhu, X., Rogers, T., Qian, R., & Kalish, C. (2007). Humans perform semi-supervised classification too. In R. C. Holte and A. Howe (Eds.), Proceedings of the 21st conference on artificial intelligence (AAAI-11) (pp. 864-870). Menlo Park, CA: The AAAI Press.
-
(2007)
Proceedings of the 21st conference on artificial intelligence (AAAI-11)
, pp. 864-870
-
-
Zhu, X.1
Rogers, T.2
Qian, R.3
Kalish, C.4
|