메뉴 건너뛰기




Volumn 19, Issue 1, 2008, Pages 48-61

Clustering algorithms research

Author keywords

Algorithm; Clustering; Experiment

Indexed keywords

CLUSTER ANALYSIS; DATA MINING; INTEGRATION;

EID: 39749179872     PISSN: 10009825     EISSN: None     Source Type: Journal    
DOI: 10.3724/SP.J.1001.2008.00048     Document Type: Article
Times cited : (468)

References (37)
  • 2
    • 0035789293 scopus 로고    scopus 로고
    • Probabilistic modeling of transactional data with applications to profiling, visualization and prediction, sigmod
    • San Francisco: ACM Press
    • Cades I, Smyth P, Mannila H. Probabilistic modeling of transactional data with applications to profiling, visualization and prediction, sigmod. In: Proc. of the 7th ACM SIGKDD. San Francisco: ACM Press, 2001. 37-46. http://www.sigkdd.org/kdd2001/.
    • (2001) Proc. of the 7th ACM SIGKDD , pp. 37-46
    • Cades, I.1    Smyth, P.2    Mannila, H.3
  • 4
    • 34250173088 scopus 로고    scopus 로고
    • Investigating diversity of clustering methods: An empirical comparison
    • Gelbard R, Goldman O, Spiegler I. Investigating diversity of clustering methods: An empirical comparison. Data and Knowledge Engineering, 2007, 63(1): 155-166.
    • (2007) Data and Knowledge Engineering , vol.63 , Issue.1 , pp. 155-166
    • Gelbard, R.1    Goldman, O.2    Spiegler, I.3
  • 8
    • 6344227435 scopus 로고    scopus 로고
    • Marques J.P.(ed.), Wu Y.F.(transl.), 2nd ed., Beijing'. Tsinghua University Press, in Chinese
    • Marques JP, Written; Wu YF, Trans. Pattern Recognition Concepts, Methods and Applications. 2nd ed., Beijing'. Tsinghua University Press, 2002. 51-74 (in Chinese).
    • (2002) Pattern Recognition Concepts, Methods and Applications , pp. 51-74
  • 9
    • 84877765730 scopus 로고    scopus 로고
    • Partitional vs hierarchical clustering using a minimum grammar complexity approach
    • LNCS 1876
    • Fred ALN, Leitao JMN. Partitional vs hierarchical clustering using a minimum grammar complexity approach. In: Proc. of the SSPR and SPR 2000. LNCS 1876. 2000. 193-202. http://www.sigmod.org/dblp/db/conf/sspr/sspr2000.html.
    • (2000) Proc. of the SSPR and SPR 2000 , pp. 193-202
    • Fred, A.L.N.1    Leitao, J.M.N.2
  • 10
    • 0034056621 scopus 로고    scopus 로고
    • Hempel's raven paradox: A positive approach to cluster analysis
    • Gelbard R, Spiegler I. Hempel's raven paradox: A positive approach to cluster analysis. Computers and Operations Research, 2000, 27(4): 305-320.
    • (2000) Computers and Operations Research , vol.27 , Issue.4 , pp. 305-320
    • Gelbard, R.1    Spiegler, I.2
  • 11
    • 38149043723 scopus 로고    scopus 로고
    • Properties of binary vector dissimilarity measures
    • Zhang B, Srihari SN. Properties of binary vector dissimilarity measures, In: Proc. of the JCIS CVPRIP 2003. 2003. 26-30. http://www.ee.duke.edu/JCIS/.
    • (2003) Proc. of the JCIS CVPRIP 2003 , pp. 26-30
    • Zhang, B.1    Srihari, S.N.2
  • 13
    • 0010486274 scopus 로고    scopus 로고
    • A fast clustering algorithm to cluster very large categorical data sets in data mining
    • Tucson
    • Huang Z. A fast clustering algorithm to cluster very large categorical data sets in data mining. In: Proc. of the SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery. Tucson, 1997. 146-151. http://www.informatik.uni-trier.de/-ley/db/conf/sigmod/.sigmod97.html.
    • (1997) Proc. of the SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery , pp. 146-151
    • Huang, Z.1
  • 14
    • 27144536001 scopus 로고    scopus 로고
    • Extensions to the k-means algorithm for clustering large data sets with categorical values
    • Huang Z. Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Mining and Knowledge, Discovery II, 1998, (2): 283-304.
    • (1998) Data Mining and Knowledge, Discovery II , Issue.2 , pp. 283-304
    • Huang, Z.1
  • 15
    • 0032595161 scopus 로고    scopus 로고
    • Fuzzy k-modes algorithm for clustering categorical data
    • Huang Z, Ng MA. Fuzzy k-modes algorithm for clustering categorical data. IEEE Trans. on Fuzzy Systems, 1999, 7(4): 446-452.
    • (1999) IEEE Trans. on Fuzzy Systems , vol.7 , Issue.4 , pp. 446-452
    • Huang, Z.1    Ng, M.A.2
  • 17
    • 85041975304 scopus 로고
    • Exploratory latent structure analysis using both identifiable and unidentifiable models
    • Goodman LA. Exploratory latent structure analysis using both identifiable and unidentifiable models. Biometrika, 1974, 61(2): 215-231.
    • (1974) Biometrika , vol.61 , Issue.2 , pp. 215-231
    • Goodman, L.A.1
  • 19
    • 0036567251 scopus 로고    scopus 로고
    • An iterative initial-points refinement algorithm for categorical data clustering
    • Sun Y, Zhu QM, Chen ZX. An iterative initial-points refinement algorithm for categorical data clustering. Pattern Recognition Letters, 2002, 23(7): 875-884.
    • (2002) Pattern Recognition Letters , vol.23 , Issue.7 , pp. 875-884
    • Sun, Y.1    Zhu, Q.M.2    Chen, Z.X.3
  • 20
    • 0002550769 scopus 로고    scopus 로고
    • Refining initial points for k-means clustering
    • San Francisco: Morgan Kaufmann Publishers
    • Bradley PS, Fayyad DM. Refining initial points for k-means clustering. In: Proc. of the 15th Internet Conf. on Machine Learning. San Francisco: Morgan Kaufmann Publishers, 1998. 91-99. http://www.cs.wisc.edu/icm198/.
    • (1998) Proc. of the 15th Internet Conf. on Machine Learning , pp. 91-99
    • Bradley, P.S.1    Fayyad, D.M.2
  • 21
    • 39749150275 scopus 로고    scopus 로고
    • http://www.ics.uci.edu/-mlearn/databases/.
  • 22
    • 2442514312 scopus 로고    scopus 로고
    • K-Nearest-Neighbor in data clustering: Incorporating local information into global optimization
    • Nicosia: ACM Press
    • Ding C, He X. K-Nearest-Neighbor in data clustering: Incorporating local information into global optimization, in: Proc. of the ACM Symp. on Applied Computing. Nicosia: ACM Press, 2004. 584-589. http://www.acm.org/conferences/sac/sac2004/.
    • (2004) Proc. of the ACM Symp. on Applied Computing , pp. 584-589
    • Ding, C.1    He, X.2
  • 23
    • 0033705385 scopus 로고    scopus 로고
    • Feature-Based fuzzy classification for interpretation of mammograms
    • Lyer NS, Kandel A, Schneider M. Feature-Based fuzzy classification for interpretation of mammograms. Fuzzy Sets System, 2000, 114(2): 271-280.
    • (2000) Fuzzy Sets System , vol.114 , Issue.2 , pp. 271-280
    • Lyer, N.S.1    Kandel, A.2    Schneider, M.3
  • 24
    • 0036107314 scopus 로고    scopus 로고
    • Segmen nation techniques for tissue differentiation in MRI of ophthalmology using fuzzy clustering algorithm
    • Yang MS, Hu YJ, Lin KCR, Lin CCL. Segmen nation techniques for tissue differentiation in MRI of ophthalmology using fuzzy clustering algorithm. Journal of Magnetic Resonance Imaging, 2002, (20): 173-179.
    • (2002) Journal of Magnetic Resonance Imaging , Issue.20 , pp. 173-179
    • Yang, M.S.1    Hu, Y.J.2    Lin, K.C.R.3    Lin, C.C.L.4
  • 25
    • 33646352233 scopus 로고    scopus 로고
    • A new feature weighted fuzzy clustering algorithm
    • in Chinese
    • Li J, Gao XB, Jiao LC. A new feature weighted fuzzy clustering algorithm. ACTA Electronics Sinica, 2006, 34(1): 412-420 (in Chinese with English abstract).
    • (2006) ACTA Electronics Sinica , vol.34 , Issue.1 , pp. 412-420
    • Li, J.1    Gao, X.B.2    Jiao, L.C.3
  • 27
    • 33750512945 scopus 로고    scopus 로고
    • Fast and robust fuzzy c-means clustering algorithms incorporating locat information for image segmentation
    • Cai WL, Chen SC, Zhang DQ. Fast and robust fuzzy c-means clustering algorithms incorporating locat information for image segmentation. Pattern Recognition, 2007, 40(3): 825-833.
    • (2007) Pattern Recognition , vol.40 , Issue.3 , pp. 825-833
    • Cai, W.L.1    Chen, S.C.2    Zhang, D.Q.3
  • 29
    • 0032686723 scopus 로고    scopus 로고
    • CHANELEON: A hierarchical clustering algorithm using dynamic modeling
    • Karypis G, Han EH, Kumar V. CHANELEON: A hierarchical clustering algorithm using dynamic modeling. IEEE Computer, 1999, 2(8): 68-75.
    • (1999) IEEE Computer , vol.2 , Issue.8 , pp. 68-75
    • Karypis, G.1    Han, E.H.2    Kumar, V.3
  • 30
    • 4143100697 scopus 로고    scopus 로고
    • AUTOCLUST: Automatic clustering via boundary extraction for mining massive point-data sets
    • Abrahart J. and Carlisle B.H.(ed.)
    • Estivill-Castro V, Lee I. AUTOCLUST: Automatic clustering via boundary extraction for mining massive point-data sets. In: Abrahart J, Carlisle BH, eds. Proc. of the 5th Int'l Conf. on Geocomputation. 2000. 23-25. http://www.geocomputation.org/2000/index.html.
    • (2000) Proc. of the 5th Int'l Conf. on Geocomputation , pp. 23-25
    • Estivill-Castro, V.1    Lee, I.2
  • 31
    • 33846286029 scopus 로고    scopus 로고
    • A clustering algorithm based on maximal θ-distant subtrees
    • Li YJ. A clustering algorithm based on maximal θ-distant subtrees. Pattern Recognition, 2007, 40(5): 1425-1431.
    • (2007) Pattern Recognition , vol.40 , Issue.5 , pp. 1425-1431
    • Li, Y.J.1
  • 32
    • 84964458218 scopus 로고    scopus 로고
    • GDILC: A grid-based density isoline clustering algorithm
    • Zhong Y.X., Cui S. and Yang Y.(ed.), Beijing: IEEE Press
    • Zhao YC, Song J. GDILC: A grid-based density isoline clustering algorithm. In: Zhong YX, Cui S, Yang Y, eds. Proc. of the Internet Conf. on Info-Net. Beijing: IEEE Press, 2001. 140-145. http://ieeexplore.ieee.org/iel5/7719/21161/00982709.pdf.
    • (2001) Proc. of the Internet Conf. on Info-Net , pp. 140-145
    • Zhao, Y.C.1    Song, J.2
  • 33
    • 0346216908 scopus 로고    scopus 로고
    • A new shifting grid clustering algorithm
    • Ma WM, Chow E, Tommy WS. A new shifting grid clustering algorithm. Pattern Recognition, 2004, 37(3): 503-514.
    • (2004) Pattern Recognition , vol.37 , Issue.3 , pp. 503-514
    • Ma, W.M.1    Chow, E.2    Tommy, W.S.3
  • 34
    • 17444370952 scopus 로고    scopus 로고
    • GCHL: A grid-clustering algorithm for high-dimensional very large spatial data bases
    • Pilevar AH, Sukumar M. GCHL: A grid-clustering algorithm for high-dimensional very large spatial data bases. Pattern Recognition Letters, 2005, 26(7): 999-1010.
    • (2005) Pattern Recognition Letters , vol.26 , Issue.7 , pp. 999-1010
    • Pilevar, A.H.1    Sukumar, M.2
  • 35
  • 36
    • 33846024749 scopus 로고    scopus 로고
    • ST-DBSCAN: An algorithm for clustering spatial-temp oral data
    • Birant D, Kut A. ST-DBSCAN: An algorithm for clustering spatial-temp oral data. Data and Knowledge Engineering, 2007, 60(1): 208-221.
    • (2007) Data and Knowledge Engineering , vol.60 , Issue.1 , pp. 208-221
    • Birant, D.1    Kut, A.2
  • 37
    • 3042775559 scopus 로고    scopus 로고
    • ACODF: A novel data clustering approach for data mining in large databases
    • Tsai CF, Tsai CW, Wu HC, Yang T. ACODF: A novel data clustering approach for data mining in large databases. Journal of Systems and Software, 2004, 73(1): 133-145.
    • (2004) Journal of Systems and Software , vol.73 , Issue.1 , pp. 133-145
    • Tsai, C.F.1    Tsai, C.W.2    Wu, H.C.3    Yang, T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.