메뉴 건너뛰기




Volumn 74, Issue 12-13, 2011, Pages 2265-2275

Energy based competitive learning

Author keywords

Auto initialization; Competitive learning; Energy; Learning rate; Outliers; Size sparsity

Indexed keywords

AUTO INITIALIZATIONS; COMPETITIVE LEARNING; ENERGY; LEARNING RATE; OUTLIERS; SIZE-SPARSITY;

EID: 79956131625     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2011.03.013     Document Type: Article
Times cited : (26)

References (27)
  • 1
    • 0002656190 scopus 로고
    • Feature discovery by competitive learning
    • Rumelhart D.E., Zipser D. Feature discovery by competitive learning. Cognitive Science 1985, 9:75-112.
    • (1985) Cognitive Science , vol.9 , pp. 75-112
    • Rumelhart, D.E.1    Zipser, D.2
  • 2
    • 34247105235 scopus 로고    scopus 로고
    • A unified perspective and new results on RHT computing, mixture based learning, and multi-learner based problem solving
    • Xu L. A unified perspective and new results on RHT computing, mixture based learning, and multi-learner based problem solving. Pattern Recognition 2007, 40:2129-2153.
    • (2007) Pattern Recognition , vol.40 , pp. 2129-2153
    • Xu, L.1
  • 3
    • 0027629412 scopus 로고
    • Rival penalized competitive learning for clustering analysis, RBF net, and curve detection
    • Xu L., Krzyzak A., Oja E. Rival penalized competitive learning for clustering analysis, RBF net, and curve detection. IEEE Transactions on Neural Networks 1993, 4:636-649.
    • (1993) IEEE Transactions on Neural Networks , vol.4 , pp. 636-649
    • Xu, L.1    Krzyzak, A.2    Oja, E.3
  • 4
    • 0032937665 scopus 로고    scopus 로고
    • A novel entropy-constrained competitive learning algorithm for vector quantization
    • Hwang W.-J., Ye B.-Y., Liao S.-C. A novel entropy-constrained competitive learning algorithm for vector quantization. Neurocomputing 1999, 25:133-147.
    • (1999) Neurocomputing , vol.25 , pp. 133-147
    • Hwang, W.-J.1    Ye, B.-Y.2    Liao, S.-C.3
  • 5
    • 0344073962 scopus 로고    scopus 로고
    • RBF nets, mixture experts, and Bayesian Ying-Yang learning
    • Xu L. RBF nets, mixture experts, and Bayesian Ying-Yang learning. Neurocomputing 1998, 19:223-257.
    • (1998) Neurocomputing , vol.19 , pp. 223-257
    • Xu, L.1
  • 6
    • 0042842439 scopus 로고    scopus 로고
    • Strip line detection and thinning by RPCL-based local PCA
    • Liu Z.-Y., Chiu K.-C., Xu L. Strip line detection and thinning by RPCL-based local PCA. Pattern Recognition Letters 2003, 24:2335-2344.
    • (2003) Pattern Recognition Letters , vol.24 , pp. 2335-2344
    • Liu, Z.-Y.1    Chiu, K.-C.2    Xu, L.3
  • 7
    • 32044436029 scopus 로고    scopus 로고
    • Multisets mixture learning-based ellipse detection
    • Liu Z.-Y., Qiao H., Xu L. Multisets mixture learning-based ellipse detection. Pattern Recognition 2006, 39:731-735.
    • (2006) Pattern Recognition , vol.39 , pp. 731-735
    • Liu, Z.-Y.1    Qiao, H.2    Xu, L.3
  • 8
    • 0034574838 scopus 로고    scopus 로고
    • Rival penalized competitive learning based approach for discrete-valued source separation
    • Cheung Y.-M., Xu L. Rival penalized competitive learning based approach for discrete-valued source separation. International Journal on Neural Systems 2000, 10:483-490.
    • (2000) International Journal on Neural Systems , vol.10 , pp. 483-490
    • Cheung, Y.-M.1    Xu, L.2
  • 9
    • 0034294101 scopus 로고    scopus 로고
    • An RPCL-based approach for Markov model identification with unknown state number
    • Cheung Y.-M., Xu L. An RPCL-based approach for Markov model identification with unknown state number. IEEE Signal Processing Letters 2000, 7:284-287.
    • (2000) IEEE Signal Processing Letters , vol.7 , pp. 284-287
    • Cheung, Y.-M.1    Xu, L.2
  • 10
    • 0345257348 scopus 로고    scopus 로고
    • Topological local principal component analysis
    • Liu Z.-Y., Xu L. Topological local principal component analysis. Neurocomputing 2003, 55:739-745.
    • (2003) Neurocomputing , vol.55 , pp. 739-745
    • Liu, Z.-Y.1    Xu, L.2
  • 11
    • 0035107843 scopus 로고    scopus 로고
    • Competitive neural network to solve scheduling problems
    • Chen R.-M., Huang Y.-M. Competitive neural network to solve scheduling problems. Neurocomputing 2001, 37:177-196.
    • (2001) Neurocomputing , vol.37 , pp. 177-196
    • Chen, R.-M.1    Huang, Y.-M.2
  • 13
    • 0742271703 scopus 로고    scopus 로고
    • A gradient BYY harmony learning rule on Gaussian mixture with automated model selection
    • Ma J., Wang T., Xu L. A gradient BYY harmony learning rule on Gaussian mixture with automated model selection. Neurocomputing 2004, 56:481-487.
    • (2004) Neurocomputing , vol.56 , pp. 481-487
    • Ma, J.1    Wang, T.2    Xu, L.3
  • 14
    • 24144442632 scopus 로고    scopus 로고
    • Asymptotic convergence properties of the EM algorithm with respect to the overlap in the mixture
    • Ma J., Xu L. Asymptotic convergence properties of the EM algorithm with respect to the overlap in the mixture. Neurocomputing 2005, 68:105-129.
    • (2005) Neurocomputing , vol.68 , pp. 105-129
    • Ma, J.1    Xu, L.2
  • 15
    • 33746803160 scopus 로고    scopus 로고
    • A cost-function approach to rival penalized competitive learning (RPCL)
    • Ma J., Wang T. A cost-function approach to rival penalized competitive learning (RPCL). Cybernetics Part B, Cybernetics 2006, 36:722-737.
    • (2006) Cybernetics Part B, Cybernetics , vol.36 , pp. 722-737
    • Ma, J.1    Wang, T.2
  • 16
    • 28244471987 scopus 로고    scopus 로고
    • On rival penalization controlled competitive learning for clustering with automatic cluster number selection
    • Cheung Y.-M. On rival penalization controlled competitive learning for clustering with automatic cluster number selection. IEEE Transactions on Knowledge Data Engineering 2005, 17:1583-1588.
    • (2005) IEEE Transactions on Knowledge Data Engineering , vol.17 , pp. 1583-1588
    • Cheung, Y.-M.1
  • 17
    • 0036506135 scopus 로고    scopus 로고
    • Self-splitting competitive learning: a new on-line clustering paradigm
    • Zhang Y.-J., Liu Z.-Q. Self-splitting competitive learning: a new on-line clustering paradigm. IEEE Transactions on Neural Networks 2002, 13:369-380.
    • (2002) IEEE Transactions on Neural Networks , vol.13 , pp. 369-380
    • Zhang, Y.-J.1    Liu, Z.-Q.2
  • 18
    • 56449089158 scopus 로고    scopus 로고
    • Competitive repetition suppression clustering: a biologically inspired learning model with application to robust clustering
    • Bacciu D., Starita A. Competitive repetition suppression clustering: a biologically inspired learning model with application to robust clustering. IEEE Transactions on Neural Networks 2008, 19:1922-1941.
    • (2008) IEEE Transactions on Neural Networks , vol.19 , pp. 1922-1941
    • Bacciu, D.1    Starita, A.2
  • 19
    • 0036790879 scopus 로고    scopus 로고
    • BYY harmony learning, structural RPCL, and topological self-organizing on mixture models
    • Xu L. BYY harmony learning, structural RPCL, and topological self-organizing on mixture models. Neural Networks 2002, 15:1125-1151.
    • (2002) Neural Networks , vol.15 , pp. 1125-1151
    • Xu, L.1
  • 20
    • 85008033374 scopus 로고    scopus 로고
    • Generalized competitive learning of Gaussian mixture models
    • Lu Z., Ip H. Generalized competitive learning of Gaussian mixture models. Cybernetics Part B, Cybernetics 2009, 39:901-909.
    • (2009) Cybernetics Part B, Cybernetics , vol.39 , pp. 901-909
    • Lu, Z.1    Ip, H.2
  • 25
    • 0034850577 scopus 로고    scopus 로고
    • A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics
    • Martin D., Fowlkes C., Tal D., Malik J. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. IEEE Conference on ICCV 2001, vol. 2:416-423.
    • (2001) IEEE Conference on ICCV , vol.2 , pp. 416-423
    • Martin, D.1    Fowlkes, C.2    Tal, D.3    Malik, J.4
  • 27
    • 34250188094 scopus 로고    scopus 로고
    • Local figure-ground cues are valid for natural images
    • Fowlkes J.M.C., Martin D. Local figure-ground cues are valid for natural images. Journal of Vision 2007, 7:1-9.
    • (2007) Journal of Vision , vol.7 , pp. 1-9
    • Fowlkes, J.M.C.1    Martin, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.