메뉴 건너뛰기




Volumn 24, Issue 10, 2012, Pages 2678-2699

Nearly extensive sequential memory lifetime achieved by coupled nonlinear neurons

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; ARTIFICIAL NEURAL NETWORK; BIOLOGICAL MODEL; COMPUTER SIMULATION; HUMAN; MEMORY; NONLINEAR SYSTEM; PHYSIOLOGY;

EID: 84872686301     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/NECO_a_00324     Document Type: Article
Times cited : (15)

References (47)
  • 2
    • 0004153033 scopus 로고
    • Cambridge: Cambridge University Press
    • Abeles, M. (1991). Corticonics. Cambridge: Cambridge University Press.
    • (1991) Corticonics
    • Abeles, M.1
  • 3
    • 0030468253 scopus 로고    scopus 로고
    • Propagation of synchronous spiking activity in feedforward neural networks
    • Aertsen, A., Diesmann, M., & Gewaltig, M.-O. (1996). Propagation of synchronous spiking activity in feedforward neural networks. Journal of Physiology-Paris, 90(3-4), 243-247.
    • (1996) Journal of Physiology-Paris , vol.90 , Issue.3-4 , pp. 243-247
    • Aertsen, A.1    Diesmann, M.2    Gewaltig, M.-O.3
  • 4
    • 0034333066 scopus 로고    scopus 로고
    • The episodic buffer: A new component of working memory?
    • Baddeley, A. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive Sciences, 4(11),417-423.
    • (2000) Trends in Cognitive Sciences , vol.4 , Issue.11 , pp. 417-423
    • Baddeley, A.1
  • 5
    • 0141638450 scopus 로고    scopus 로고
    • Dynamics of population code for working memory in the prefrontal cortex
    • Baeg, E. H., Kim, Y. B., Huh, K., Mook-Jung, I., Kim, H. T., & Jung, M.W. (2003). Dynamics of population code for working memory in the prefrontal cortex. Neuron, 40(1), 177-188.
    • (2003) Neuron , vol.40 , Issue.1 , pp. 177-188
    • Baeg, E.H.1    Kim, Y.B.2    Huh, K.3    Mook-Jung, I.4    Kim, H.T.5    Jung, M.W.6
  • 6
    • 2942552269 scopus 로고    scopus 로고
    • Real-time computation at the edge of chaos in recurrent neural networks
    • Bertschinger, N., & Natschl, T. (2004). Real-time computation at the edge of chaos in recurrent neural networks. Neural Computation, 1436, 1413-1436.
    • (2004) Neural Computation , vol.1436 , pp. 1413-1436
    • Bertschinger, N.1    Natschl, T.2
  • 7
    • 70450171788 scopus 로고    scopus 로고
    • Dynamical origin of the effective storage capacity in the brain working memory
    • Bick, C., & Rabinovich, M. I. (2009).Dynamical origin of the effective storage capacity in the brain working memory. Physical Review Letters, 102(21): 218101.
    • (2009) Physical Review Letters , vol.102 , Issue.21 , pp. 218101
    • Bick, C.1    Rabinovich, M.I.2
  • 8
    • 33846493795 scopus 로고
    • Amodel of neocortex
    • Network: Computation in Neural Systems
    • Bienenstock, E. (1995). Amodel of neocortex. Network: Computation in Neural Systems, 6(2), 179-224.
    • (1995) , vol.6 , Issue.2 , pp. 179-224
    • Bienenstock, E.1
  • 9
    • 77953355233 scopus 로고    scopus 로고
    • Connectivity, dynamics, and memory in reservoir computing with binary and analog neurons
    • Büsing, L., Schrauwen, B., & Legenstein, R. (2010). Connectivity, dynamics, and memory in reservoir computing with binary and analog neurons. Neural Computation, 22(5), 1272-1311.
    • (2010) Neural Computation , vol.22 , Issue.5 , pp. 1272-1311
    • Büsing, L.1    Schrauwen, B.2    Legenstein, R.3
  • 10
    • 0031762840 scopus 로고    scopus 로고
    • A model of visuospatial working memory in prefrontal cortex: Recurrent network and cellular bistability
    • Camperi, M., & Wang, X.-J. (1998). A model of visuospatial working memory in prefrontal cortex: Recurrent network and cellular bistability. Journal of Computational Neuroscience, 5(4), 383-405.
    • (1998) Journal of Computational Neuroscience , vol.5 , Issue.4 , pp. 383-405
    • Camperi, M.1    Wang, X.-J.2
  • 12
    • 0035793875 scopus 로고    scopus 로고
    • The role of working memory in visual selective attention
    • de Fockert, J. W., Rees, G., Frith, C. D., & Lavie, N. (2001). The role of working memory in visual selective attention. Science, 291(5509), 1803-1806.
    • (2001) Science , vol.291 , Issue.5509 , pp. 1803-1806
    • de Fockert, J.W.1    Rees, G.2    Frith, C.D.3    Lavie, N.4
  • 13
    • 0033518170 scopus 로고    scopus 로고
    • Stable propagation of synchronous spiking in cortical neural networks
    • Diesmann, M., Gewaltig, M.-O., & Aertsen, A. (1999). Stable propagation of synchronous spiking in cortical neural networks. Nature, 402(6761), 529-533.
    • (1999) Nature , vol.402 , Issue.6761 , pp. 529-533
    • Diesmann, M.1    Gewaltig, M.-O.2    Aertsen, A.3
  • 14
    • 0015544566 scopus 로고
    • Unit activity in prefrontal cortex during delayed-response performance: Neuronal correlates of transient memory
    • Fuster, J. M. (1973). Unit activity in prefrontal cortex during delayed-response performance: Neuronal correlates of transient memory. Journal of Neurophysiology, 36(1), 61-78.
    • (1973) Journal of Neurophysiology , vol.36 , Issue.1 , pp. 61-78
    • Fuster, J.M.1
  • 16
    • 85162050505 scopus 로고    scopus 로고
    • Short-term memory in neuronal networks through dynamical compressed sensing
    • J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, & A. Culotta (Eds.), Red Hook, NY: Curran.
    • Ganguli, S., & Sompolinsky, H. (2010). Short-term memory in neuronal networks through dynamical compressed sensing. In J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, & A. Culotta (Eds.), Advances in neural information processing systems, 23 (pp. 667-675). Red Hook, NY: Curran.
    • (2010) Advances in neural information processing systems , vol.23 , pp. 667-675
    • Ganguli, S.1    Sompolinsky, H.2
  • 17
    • 60449111240 scopus 로고    scopus 로고
    • Memorywithout feedback in a neural network
    • Goldman, M. S. (2009).Memorywithout feedback in a neural network. Neuron, 61(4), 621-634.
    • (2009) Neuron , vol.61 , Issue.4 , pp. 621-634
    • Goldman, M.S.1
  • 18
    • 0142250862 scopus 로고    scopus 로고
    • Robust persistent neural activity in a model integrator with multiple hysteretic dendrites per neuron
    • Goldman, M. S., Levine, J. H., Major, G., Tank, D. W., & Seung, H. S. (2003). Robust persistent neural activity in a model integrator with multiple hysteretic dendrites per neuron. Cerebral Cortex, 13(11), 1185-1195.
    • (2003) Cerebral Cortex , vol.13 , Issue.11 , pp. 1185-1195
    • Goldman, M.S.1    Levine, J.H.2    Major, G.3    Tank, D.W.4    Seung, H.S.5
  • 19
    • 0028938076 scopus 로고
    • Cellular basis of working memory
    • Goldman-Rakic, P. S. (1995). Cellular basis of working memory. Neuron, 14(3), 477-485.
    • (1995) Neuron , vol.14 , Issue.3 , pp. 477-485
    • Goldman-Rakic, P.S.1
  • 20
    • 84874219469 scopus 로고    scopus 로고
    • An ultra-sparse code underlies the generation of neural sequences in a songbird
    • Hahnloser, R.H.R., Kozhevnikov, A. A., & Fee, M. S. (2002). An ultra-sparse code underlies the generation of neural sequences in a songbird. Nature, 797(1989),796-797.
    • (2002) Nature , vol.797 , Issue.1989 , pp. 796-797
    • Hahnloser, R.H.R.1    Kozhevnikov, A.A.2    Fee, M.S.3
  • 23
    • 2142773944 scopus 로고    scopus 로고
    • Synfire chains and cortical songs: Temporal modules of cortical activity
    • Ikegaya, Y., Aaron, G., Cossart, R., Aronov, D., Lampl, I., Ferster, D., & Yuste, R. (2004). Synfire chains and cortical songs: Temporal modules of cortical activity. Science, 304(5670), 559-564.
    • (2004) Science , vol.304 , Issue.5670 , pp. 559-564
    • Ikegaya, Y.1    Aaron, G.2    Cossart, R.3    Aronov, D.4    Lampl, I.5    Ferster, D.6    Yuste, R.7
  • 24
    • 1842421269 scopus 로고    scopus 로고
    • Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication
    • Jaeger, H., & Haas, H. (2004). Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication. Science, 304(5667), 78-80.
    • (2004) Science , vol.304 , Issue.5667 , pp. 78-80
    • Jaeger, H.1    Haas, H.2
  • 25
    • 33845882729 scopus 로고    scopus 로고
    • Coordinated memory replay in the visual cortex and hippocampus during sleep
    • Ji, D., & Wilson, M. A. (2007). Coordinated memory replay in the visual cortex and hippocampus during sleep. Nature Neuroscience, 10(1), 100-107.
    • (2007) Nature Neuroscience , vol.10 , Issue.1 , pp. 100-107
    • Ji, D.1    Wilson, M.A.2
  • 26
    • 35248817244 scopus 로고    scopus 로고
    • Intrinsic bursting enhances the robustness of a neural network model of sequence generation by avian brain area HVC
    • Jin, D. Z., Ramazanoglu, F. M., & Seung, H. S. (2007). Intrinsic bursting enhances the robustness of a neural network model of sequence generation by avian brain area HVC. Journal of Computational Neuroscience, 23, 283-289.
    • (2007) Journal of Computational Neuroscience , vol.23 , pp. 283-289
    • Jin, D.Z.1    Ramazanoglu, F.M.2    Seung, H.S.3
  • 28
    • 0041906915 scopus 로고    scopus 로고
    • Properties of synaptic transmission and the global stability of delayed activity states
    • Koulakov, A. A. (2001). Properties of synaptic transmission and the global stability of delayed activity states. Network: Computation in Neural Systems, 12, 47-74.
    • (2001) Network: Computation in Neural Systems , vol.12 , pp. 47-74
    • Koulakov, A.A.1
  • 29
    • 45549109207 scopus 로고    scopus 로고
    • Conditions for propagating synchronous spiking and asynchronous firing rates in a cortical network model
    • Kumar, A., Rotter, S., & Aertsen, A. (2008). Conditions for propagating synchronous spiking and asynchronous firing rates in a cortical network model. Journal of Neuroscience, 28(20), 5268-5280.
    • (2008) Journal of Neuroscience , vol.28 , Issue.20 , pp. 5268-5280
    • Kumar, A.1    Rotter, S.2    Aertsen, A.3
  • 30
    • 77957343940 scopus 로고    scopus 로고
    • SORN: A self-organizing recurrent neural network
    • doi:10.3389/neuro.10.023.2009
    • Lazar, A., Pipa, G., & Triesch, J. (2009). SORN: A self-organizing recurrent neural network. Frontiers in Computational Neuroscience, 3(23). doi:10.3389/neuro.10.023.2009.
    • (2009) Frontiers in Computational Neuroscience , vol.3 , Issue.23
    • Lazar, A.1    Pipa, G.2    Triesch, J.3
  • 31
    • 84856384696 scopus 로고    scopus 로고
    • Noise tolerance of attractor and feedforward memory models
    • Lim, S., & Goldman, M. S. (2011). Noise tolerance of attractor and feedforward memory models. Neural Computation, 24(2), 332-390.
    • (2011) Neural Computation , vol.24 , Issue.2 , pp. 332-390
    • Lim, S.1    Goldman, M.S.2
  • 32
    • 0032129687 scopus 로고    scopus 로고
    • Arole forNMDA-receptor channels in working memory
    • Lisman, J. E., Fellous, J.-M.,& Wang, X.-J. (1998).Arole forNMDA-receptor channels in working memory. Nature Neuroscience, 1(4), 273-275.
    • (1998) Nature Neuroscience , vol.1 , Issue.4 , pp. 273-275
    • Lisman, J.E.1    Fellous, J.-M.2    Wang, X.-J.3
  • 33
    • 78549267109 scopus 로고    scopus 로고
    • Support for a synaptic chain model of neuronal sequence generation
    • Long, M. A., Jin, D. Z., & Fee, M. S. (2010). Support for a synaptic chain model of neuronal sequence generation. Nature, 468(7322), 394-399.
    • (2010) Nature , vol.468 , Issue.7322 , pp. 394-399
    • Long, M.A.1    Jin, D.Z.2    Fee, M.S.3
  • 34
    • 0036834701 scopus 로고    scopus 로고
    • Real-time computing without stable states: A new framework for neural computation based on perturbations
    • Maass, W., Natschläger, T., & Markram, H. (2002). Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Computation, 14(11), 2531-2560.
    • (2002) Neural Computation , vol.14 , Issue.11 , pp. 2531-2560
    • Maass, W.1    Natschläger, T.2    Markram, H.3
  • 35
    • 0032480219 scopus 로고    scopus 로고
    • When temporal terms belie conceptual order
    • Münte, T. F., Schiltz, K., & Kutas, M. (1998). When temporal terms belie conceptual order. Nature, 395(6697), 71-72.
    • (1998) Nature , vol.395 , Issue.6697 , pp. 71-72
    • Münte, T.F.1    Schiltz, K.2    Kutas, M.3
  • 36
    • 0034594896 scopus 로고    scopus 로고
    • Macaque monkeys categorize images by their ordinal number
    • Orlov, T., Yakovlev, V., Hochstein, S., & Zohary, E. (2000). Macaque monkeys categorize images by their ordinal number. Nature, 404(6773), 77-80.
    • (2000) Nature , vol.404 , Issue.6773 , pp. 77-80
    • Orlov, T.1    Yakovlev, V.2    Hochstein, S.3    Zohary, E.4
  • 37
    • 51149102880 scopus 로고    scopus 로고
    • Internally generated cell assembly sequences in the rat hippocampus
    • Pastalkova, E., Itskov, V., Amarasingham, A., & Buzsáki, G. (2008). Internally generated cell assembly sequences in the rat hippocampus. Science, 321(5894), 1322-1327.
    • (2008) Science , vol.321 , Issue.5894 , pp. 1322-1327
    • Pastalkova, E.1    Itskov, V.2    Amarasingham, A.3    Buzsáki, G.4
  • 39
    • 84930067832 scopus 로고    scopus 로고
    • Dynamics-based sequential memory:Winnerless competition of patterns
    • Seliger, P., Tsimring, L. S., & Rabinovich, M. I. (2003). Dynamics-based sequential memory:Winnerless competition of patterns. Physical Review E, 67(1), 1-4.
    • (2003) Physical Review E , vol.67 , Issue.1 , pp. 1-4
    • Seliger, P.1    Tsimring, L.S.2    Rabinovich, M.I.3
  • 40
    • 0001553626 scopus 로고
    • Temporal association in asymmetric neural network
    • Sompolinsky, H., & Kanter, I. (1986). Temporal association in asymmetric neural network. Physical Review Letters, 57(22), 2861-2864.
    • (1986) Physical Review Letters , vol.57 , Issue.22 , pp. 2861-2864
    • Sompolinsky, H.1    Kanter, I.2
  • 41
    • 68949147577 scopus 로고    scopus 로고
    • Article generating coherent patterns of activity from chaotic neural networks
    • Sussillo, D., & Abbott, L. F. (2009). Article generating coherent patterns of activity from chaotic neural networks. Neuron, 63(4), 544-557.
    • (2009) Neuron , vol.63 , Issue.4 , pp. 544-557
    • Sussillo, D.1    Abbott, L.F.2
  • 43
    • 18244424967 scopus 로고    scopus 로고
    • The ground state of cortical feedforward networks
    • Tetzlaff, T., Geisel, T., & Diesmann, M. (2002). The ground state of cortical feedforward networks. Neurocomputing, 44, 673-678.
    • (2002) Neurocomputing , vol.44 , pp. 673-678
    • Tetzlaff, T.1    Geisel, T.2    Diesmann, M.3
  • 44
    • 81555214501 scopus 로고    scopus 로고
    • Beyond the edge of chaos: Amplification and temporal integration by recurrent networks in the chaotic regime
    • Toyoizumi, T., & Abbott, L. F. (2011). Beyond the edge of chaos: Amplification and temporal integration by recurrent networks in the chaotic regime. Physical Review E, 84: 051908.
    • (2011) Physical Review E , vol.84 , pp. 051908
    • Toyoizumi, T.1    Abbott, L.F.2
  • 45
    • 0036523040 scopus 로고    scopus 로고
    • Fast propagation of firing rates through layered networks of noisy neurons
    • van Rossum, M. C.W., Turrigiano, G. G., & Nelson, S. B. (2002). Fast propagation of firing rates through layered networks of noisy neurons. Journal of Neuroscience, 22(5), 1956-1966.
    • (2002) Journal of Neuroscience , vol.22 , Issue.5 , pp. 1956-1966
    • van Rossum, M.C.W.1    Turrigiano, G.G.2    Nelson, S.B.3
  • 46
    • 28044448948 scopus 로고    scopus 로고
    • Signal propagation and logic gating in networks of integrate-and-fire neurons
    • Vogels, T., & Abbott, L. F. (2005). Signal propagation and logic gating in networks of integrate-and-fire neurons. Journal of Neuroscience, 25(46), 10786-10795.
    • (2005) Journal of Neuroscience , vol.25 , Issue.46 , pp. 10786-10795
    • Vogels, T.1    Abbott, L.F.2
  • 47
    • 2342592517 scopus 로고    scopus 로고
    • Short-termmemory in orthogonal neural networks
    • White, O. L., Lee, D. D.,& Sompolinsky, H. (2004). Short-termmemory in orthogonal neural networks. Physical Review Letters, 92(14), 148102.
    • (2004) Physical Review Letters , vol.92 , Issue.14 , pp. 148102
    • White, O.L.1    Lee, D.D.2    Sompolinsky, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.