-
2
-
-
0242354999
-
Geometric and physical interpretation of fractional integration and fractional differentiation
-
Podlubny I. Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal. 2002, 5:367-386.
-
(2002)
Fract. Calc. Appl. Anal.
, vol.5
, pp. 367-386
-
-
Podlubny, I.1
-
3
-
-
0007042083
-
Nonlinear oscillation with fractional derivative and its applications
-
in: International Conference on Vibrating Engineering'98, Dalian, China
-
J. He, Nonlinear oscillation with fractional derivative and its applications, in: International Conference on Vibrating Engineering'98, Dalian, China, 1998, pp. 288-291.
-
(1998)
, pp. 288-291
-
-
He, J.1
-
4
-
-
79651469164
-
The non-standard finite difference scheme for linear fractional PDEs in fluid mechanics
-
Moaddy K., Momani S., Hashim I. The non-standard finite difference scheme for linear fractional PDEs in fluid mechanics. Comput. Math. Appl. 2011, 61:1209-1216.
-
(2011)
Comput. Math. Appl.
, vol.61
, pp. 1209-1216
-
-
Moaddy, K.1
Momani, S.2
Hashim, I.3
-
5
-
-
0347763940
-
Some applications of nonlinear fractional differential equations and their approximations
-
He J. Some applications of nonlinear fractional differential equations and their approximations. Bull. Sci. Technol. 1999, 15:86-90.
-
(1999)
Bull. Sci. Technol.
, vol.15
, pp. 86-90
-
-
He, J.1
-
6
-
-
0032307661
-
Approximate analytical solution for seepage flow with fractional derivatives in porous media
-
He J. Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comput. Methods. Appl. Mech. Eng. 1998, 167:57-68.
-
(1998)
Comput. Methods. Appl. Mech. Eng.
, vol.167
, pp. 57-68
-
-
He, J.1
-
7
-
-
0041384356
-
Chaotic dynamics of the fractional lorenz system
-
Grigorenko I., Grigorenko E. Chaotic dynamics of the fractional lorenz system. Phys. Rev. Lett. 2003, 91:34101-34104.
-
(2003)
Phys. Rev. Lett.
, vol.91
, pp. 34101-34104
-
-
Grigorenko, I.1
Grigorenko, E.2
-
8
-
-
0001983732
-
Fractional Calculus: Some Basic Problems in Continuum and Statistical Mechanics
-
Springer-Verlag, New York
-
Mainardi F. Fractional Calculus: Some Basic Problems in Continuum and Statistical Mechanics. Fractals and Fractional Calculus in Continuum Mechanics 1997, Springer-Verlag, New York, pp. 291-348.
-
(1997)
Fractals and Fractional Calculus in Continuum Mechanics
, pp. 291-348
-
-
Mainardi, F.1
-
10
-
-
33751512215
-
Decomposition method for solving fractional Riccati differential equations
-
Momani S., Shawagfeh N.T. Decomposition method for solving fractional Riccati differential equations. Appl. Math. Comput. 2006, 182:1083-1092.
-
(2006)
Appl. Math. Comput.
, vol.182
, pp. 1083-1092
-
-
Momani, S.1
Shawagfeh, N.T.2
-
11
-
-
33750841854
-
Numerical methods for fourth-order fractional integro-differential equations
-
Momani S., Noor M.A. Numerical methods for fourth-order fractional integro-differential equations. Appl. Math. Comput. 2006, 182:754-760.
-
(2006)
Appl. Math. Comput.
, vol.182
, pp. 754-760
-
-
Momani, S.1
Noor, M.A.2
-
12
-
-
34248373867
-
Solving a multi-order fractional differential equation
-
Gejji V.D., Jafari H. Solving a multi-order fractional differential equation. Appl. Math. Comput. 2007, 189:541-548.
-
(2007)
Appl. Math. Comput.
, vol.189
, pp. 541-548
-
-
Gejji, V.D.1
Jafari, H.2
-
13
-
-
33751200976
-
Analytical approximate solution of nonlinear dynamic system containing fractional derivative by modified decomposition method
-
Ray S.S., Chaudhuri K.S., Bera R.K. Analytical approximate solution of nonlinear dynamic system containing fractional derivative by modified decomposition method. Appl. Math. Comput. 2006, 182:544-552.
-
(2006)
Appl. Math. Comput.
, vol.182
, pp. 544-552
-
-
Ray, S.S.1
Chaudhuri, K.S.2
Bera, R.K.3
-
14
-
-
33751513961
-
Numerical solutions for fractional KdV-Burgers equation by Adomian decomposition method
-
Wang Q. Numerical solutions for fractional KdV-Burgers equation by Adomian decomposition method. Appl. Math. Comput. 2006, 182:1048-1055.
-
(2006)
Appl. Math. Comput.
, vol.182
, pp. 1048-1055
-
-
Wang, Q.1
-
16
-
-
74249121146
-
Homotopy analysis method for solving multi-term linear and nonlinear diffusion-wave equations of fractional order
-
Jafari H., Golbabai A., Seifi S., Sayevand K. Homotopy analysis method for solving multi-term linear and nonlinear diffusion-wave equations of fractional order. Comput. Math. Appl. 2010, 59:1337-1344.
-
(2010)
Comput. Math. Appl.
, vol.59
, pp. 1337-1344
-
-
Jafari, H.1
Golbabai, A.2
Seifi, S.3
Sayevand, K.4
-
17
-
-
74149089078
-
Analytical approximate solutions of systems of fractional algebraic-differential equations by homotopy analysis method
-
Zurigat M., Momani S., Alawneh A. Analytical approximate solutions of systems of fractional algebraic-differential equations by homotopy analysis method. Comput. Math. Appl. 2010, 59:1227-1235.
-
(2010)
Comput. Math. Appl.
, vol.59
, pp. 1227-1235
-
-
Zurigat, M.1
Momani, S.2
Alawneh, A.3
-
18
-
-
80053341743
-
Homotopy analysis method for higher-order fractional integro-differential equations
-
Zhang Y.H.X., Tang B. Homotopy analysis method for higher-order fractional integro-differential equations. Comput. Math. Appl. 2011, 62:3194-3203.
-
(2011)
Comput. Math. Appl.
, vol.62
, pp. 3194-3203
-
-
Zhang, Y.H.X.1
Tang, B.2
-
19
-
-
33745712076
-
An approximate method for numerical solution of fractional differential equations
-
Kumar P., Agrawal O.P. An approximate method for numerical solution of fractional differential equations. Signal Process. 2006, 86:2602-2610.
-
(2006)
Signal Process.
, vol.86
, pp. 2602-2610
-
-
Kumar, P.1
Agrawal, O.P.2
-
20
-
-
1542425102
-
Numerical solution of the space fractional Fokker-Planck equation
-
Liu I.T.F., Anh V. Numerical solution of the space fractional Fokker-Planck equation. J. Comput. Appl. Math. 2004, 166:209-219.
-
(2004)
J. Comput. Appl. Math.
, vol.166
, pp. 209-219
-
-
Liu, I.T.F.1
Anh, V.2
-
21
-
-
33646128485
-
Weighted average finite difference methods for fractional diffusion equations
-
Yuste S.B. Weighted average finite difference methods for fractional diffusion equations. J. Comput. Phys. 2006, 216:264-274.
-
(2006)
J. Comput. Phys.
, vol.216
, pp. 264-274
-
-
Yuste, S.B.1
-
22
-
-
76449113714
-
Fractional diffusion equations by the Kansa method
-
Chen W., Ye L., Su H. Fractional diffusion equations by the Kansa method. Comput. Math. Appl. 2010, 59:1614-1620.
-
(2010)
Comput. Math. Appl.
, vol.59
, pp. 1614-1620
-
-
Chen, W.1
Ye, L.2
Su, H.3
-
23
-
-
84872612601
-
Analysis of a local discontinuous Galerkin method for time-fractional advection-diffusion equations
-
Int. J. Numer. Method H.
-
Y. He, L. Wei, X. Zhang, Analysis of a local discontinuous Galerkin method for time-fractional advection-diffusion equations, Int. J. Numer. Method H. (2012).
-
(2012)
-
-
He, Y.1
Wei, L.2
Zhang, X.3
-
24
-
-
84870242888
-
An integral operational matrix based on jacobi polynomials for solving fractional-order differential equations
-
Kazem S. An integral operational matrix based on jacobi polynomials for solving fractional-order differential equations. Appl. Math. Model. 2012, 10.1016/j.apm.2012.03.033.
-
(2012)
Appl. Math. Model.
-
-
Kazem, S.1
-
25
-
-
74149085984
-
An algorithm for the numerical solution of differential equations of fractional order
-
Odibat Z., Momani S. An algorithm for the numerical solution of differential equations of fractional order. J. Appl. Math. Inform. 2008, 26:15-27.
-
(2008)
J. Appl. Math. Inform.
, vol.26
, pp. 15-27
-
-
Odibat, Z.1
Momani, S.2
-
27
-
-
84872596071
-
On the fractional order Rodrigues formula for the Legendre polynomials
-
Rida S.Z., Yousef A.M. On the fractional order Rodrigues formula for the Legendre polynomials. Adv. Appl. Math. Sci. 2011, 10:509-518.
-
(2011)
Adv. Appl. Math. Sci.
, vol.10
, pp. 509-518
-
-
Rida, S.Z.1
Yousef, A.M.2
-
28
-
-
74249095517
-
A new operational matrix for solving fractional-order differential equations
-
Saadatmandi A., Dehghan M. A new operational matrix for solving fractional-order differential equations. Comput. Math. Appl. 2010, 59:1326-1336.
-
(2010)
Comput. Math. Appl.
, vol.59
, pp. 1326-1336
-
-
Saadatmandi, A.1
Dehghan, M.2
-
29
-
-
0012899160
-
Numerical solution of the Bagley-Torvik equation
-
Diethelm K., Ford N.J. Numerical solution of the Bagley-Torvik equation. BIT 2002, 42:490-507.
-
(2002)
BIT
, vol.42
, pp. 490-507
-
-
Diethelm, K.1
Ford, N.J.2
-
30
-
-
33846930099
-
A Tau method for the one-dimensional parabolic inverse problem subject to temperature overspecification
-
Dehghan M., Saadatmandi A. A Tau method for the one-dimensional parabolic inverse problem subject to temperature overspecification. Comput. Math. Appl. 2006, 52:933-940.
-
(2006)
Comput. Math. Appl.
, vol.52
, pp. 933-940
-
-
Dehghan, M.1
Saadatmandi, A.2
-
31
-
-
57749203983
-
Numerical solution of a mathematical model for capillary formation in tumor angiogenesis via the Tau method
-
Saadatmandi A., Dehghan M. Numerical solution of a mathematical model for capillary formation in tumor angiogenesis via the Tau method. Commun. Numer. Methods Eng. 2008, 24:1467-1474.
-
(2008)
Commun. Numer. Methods Eng.
, vol.24
, pp. 1467-1474
-
-
Saadatmandi, A.1
Dehghan, M.2
-
32
-
-
54349113107
-
Analytical comparison between the homotopy perturbation method and variational iteration method for differential equations of fractional order
-
Odibat Z., Momani S. Analytical comparison between the homotopy perturbation method and variational iteration method for differential equations of fractional order. Int. J. Mod. Phys. B 2008, 22:4041-4058.
-
(2008)
Int. J. Mod. Phys. B
, vol.22
, pp. 4041-4058
-
-
Odibat, Z.1
Momani, S.2
-
33
-
-
35349007940
-
Numerical studies for a multi-order fractional differential equation
-
Sweilam N.H., Khader M.M., Al-Bar R.F. Numerical studies for a multi-order fractional differential equation. Phys. Lett. A 2007, 371:26-33.
-
(2007)
Phys. Lett. A
, vol.371
, pp. 26-33
-
-
Sweilam, N.H.1
Khader, M.M.2
Al-Bar, R.F.3
-
34
-
-
35348869861
-
Modified homotopy perturbation method: application to quadratic Riccati differential equation of fractional order
-
Odibat Z., Momani S. Modified homotopy perturbation method: application to quadratic Riccati differential equation of fractional order. Chaos Solitons Fract. 2008, 36:167-174.
-
(2008)
Chaos Solitons Fract.
, vol.36
, pp. 167-174
-
-
Odibat, Z.1
Momani, S.2
|