-
4
-
-
34247212711
-
Remarks on fractional derivatives
-
C.P. Li, and W.H. Deng Remarks on fractional derivatives Appl. Math. Comput. 187 2007 777 784
-
(2007)
Appl. Math. Comput.
, vol.187
, pp. 777-784
-
-
Li, C.P.1
Deng, W.H.2
-
5
-
-
0036887936
-
Chaos, fractional kinetics, and anomalous transport
-
G.M. Zaslavsky Chaos, fractional kinetics, and anomalous transport Phys. Rep. 371 2002 461 580
-
(2002)
Phys. Rep.
, vol.371
, pp. 461-580
-
-
Zaslavsky, G.M.1
-
7
-
-
17644386529
-
Analytical approximate solution for fractional heat-like and wave-like equations with variable coefficients using the decomposition method
-
S. Momani Analytical approximate solution for fractional heat-like and wave-like equations with variable coefficients using the decomposition method Appl. Math. Comput. 165 2 2005 459 472
-
(2005)
Appl. Math. Comput.
, vol.165
, Issue.2
, pp. 459-472
-
-
Momani, S.1
-
8
-
-
27144506208
-
Analytic and approximate solutions of the space- and time-fractional telegraph equations
-
S. Momani Analytic and approximate solutions of the space- and time-fractional telegraph equations Appl. Math. Comput. 170 2005 1126 1134
-
(2005)
Appl. Math. Comput.
, vol.170
, pp. 1126-1134
-
-
Momani, S.1
-
9
-
-
38049162125
-
Variational iteration method for solving the space- and time-fractional KdV equation
-
S. Momani, Z. Odibat, and A. Alawneh Variational iteration method for solving the space- and time-fractional KdV equation Numer. Methods Partial Differential Equations J. 24 1 2008 262 271
-
(2008)
Numer. Methods Partial Differential Equations J.
, vol.24
, Issue.1
, pp. 262-271
-
-
Momani, S.1
Odibat, Z.2
Alawneh, A.3
-
10
-
-
70350564868
-
The variational iteration method: An efficient scheme for handling fractional partial differential equations in fluid mechanics
-
Z. Odibat, and S. Momani The variational iteration method: an efficient scheme for handling fractional partial differential equations in fluid mechanics Comput. Math. Appl. 58 2009 2199 2208
-
(2009)
Comput. Math. Appl.
, vol.58
, pp. 2199-2208
-
-
Odibat, Z.1
Momani, S.2
-
11
-
-
0037081673
-
Analysis of fractional differential equations
-
K. Diethelm, and N.J. Ford Analysis of fractional differential equations J. Math. Anal. Appl. 265 2002 229 248
-
(2002)
J. Math. Anal. Appl.
, vol.265
, pp. 229-248
-
-
Diethelm, K.1
Ford, N.J.2
-
12
-
-
0036650479
-
A predictorcorrector approach for the numerical solution of fractional differential equations
-
K. Diethelm, N.J. Ford, and A.D. Freed A predictorcorrector approach for the numerical solution of fractional differential equations Nonlinear Dynam. 29 2002 3 22
-
(2002)
Nonlinear Dynam.
, vol.29
, pp. 3-22
-
-
Diethelm, K.1
Ford, N.J.2
Freed, A.D.3
-
13
-
-
1842832060
-
Chaos in Chen's system with a fractional order
-
C.P. Li, and G.J. Peng Chaos in Chen's system with a fractional order Chaos Solitons Fractals 22 2004 443 450
-
(2004)
Chaos Solitons Fractals
, vol.22
, pp. 443-450
-
-
Li, C.P.1
Peng, G.J.2
-
14
-
-
4043121080
-
Detailed error analysis for a fractional Adams method
-
K. Diethelm, N.J. Ford, and A.D. Freed Detailed error analysis for a fractional Adams method Numer. Algorithms 26 2004 31 52
-
(2004)
Numer. Algorithms
, vol.26
, pp. 31-52
-
-
Diethelm, K.1
Ford, N.J.2
Freed, A.D.3
-
15
-
-
40549108274
-
Numerical bifurcation of predatorprey fractional differential equations with a constant rate harvesting
-
G.H. Erjaee Numerical bifurcation of predatorprey fractional differential equations with a constant rate harvesting J. Phys. Conf. Ser. 96 2007 012045
-
(2007)
J. Phys. Conf. Ser.
, vol.96
, pp. 012045
-
-
Erjaee, G.H.1
-
16
-
-
79960979342
-
Non-standard discretization for fractional differential equations
-
Isfahan, Iran
-
G. Hussian, M. Alnasr, S. Momani, Non-standard discretization for fractional differential equations, in: Proceeding of 8th Seminar of Differential Equations and Dynamical Systems in, Isfahan, Iran.
-
Proceeding of 8th Seminar of Differential Equations and Dynamical Systems
-
-
Hussian, G.1
Alnasr, M.2
Momani, S.3
-
17
-
-
36549063424
-
A generalized differential transform method for linear partial differential equations of fractional order
-
DOI 10.1016/j.aml.2007.02.022, PII S0893965907001279
-
Z. Odibat, and S. Momani A generalized differential transform method for linear partial differential equations of fractional order Appl. Math. Lett. 21 2008 194 199 (Pubitemid 350181314)
-
(2008)
Applied Mathematics Letters
, vol.21
, Issue.2
, pp. 194-199
-
-
Odibat, Z.1
Momani, S.2
-
18
-
-
78649549013
-
On the solution set for a class of sequential fractional differential equations
-
D. Baleanu, O.G. Mustafa, and R.P. Agarwal On the solution set for a class of sequential fractional differential equations J. Phys. A: Math. 43 38 2010 385209
-
(2010)
J. Phys. A: Math.
, vol.43
, Issue.38
, pp. 385209
-
-
Baleanu, D.1
Mustafa, O.G.2
Agarwal, R.P.3
-
19
-
-
76649111047
-
On the global existence of solutions to a class of fractional differential equations
-
D. Baleanu, and O.G. Mustafa On the global existence of solutions to a class of fractional differential equations Comput. Math. Appl. 59 5 2010 1835 1841
-
(2010)
Comput. Math. Appl.
, vol.59
, Issue.5
, pp. 1835-1841
-
-
Baleanu, D.1
Mustafa, O.G.2
-
21
-
-
84985304745
-
Exact solutions to a finite difference model of a nonlinear reactionadvection equation: Implications for numerical analysis
-
R.E. Mickens Exact solutions to a finite difference model of a nonlinear reactionadvection equation: implications for numerical analysis Numer. Methods Partial Differential Equations Fractals 5 1989 313 325
-
(1989)
Numer. Methods Partial Differential Equations Fractals
, vol.5
, pp. 313-325
-
-
Mickens, R.E.1
-
22
-
-
0025599254
-
Finite difference models of ordinary differential equations: In uence of denominator models
-
R.E. Mickens, and A. Smith Finite difference models of ordinary differential equations: in uence of denominator models J. Franklin Inst. Fractals 327 1990 143 145
-
(1990)
J. Franklin Inst. Fractals
, vol.327
, pp. 143-145
-
-
Mickens, R.E.1
Smith, A.2
-
26
-
-
4444368867
-
Finite difference approximations for fractional advection dispersion flow equations
-
M.M. Meerschaert, and C. Tadjeran Finite difference approximations for fractional advection dispersion flow equations J. Comput. Appl. Math. 172 2003 65 77
-
(2003)
J. Comput. Appl. Math.
, vol.172
, pp. 65-77
-
-
Meerschaert, M.M.1
Tadjeran, C.2
-
27
-
-
0037284570
-
A nonstandard finite difference scheme for a fisher PDE having nonlinear diffusion
-
R.E. Mickens A nonstandard finite difference scheme for a fisher PDE having nonlinear diffusion Comput. Math. Appl. 45 2003 429 436
-
(2003)
Comput. Math. Appl.
, vol.45
, pp. 429-436
-
-
Mickens, R.E.1
|