메뉴 건너뛰기




Volumn 61, Issue 4, 2011, Pages 1209-1216

The non-standard finite difference scheme for linear fractional PDEs in fluid mechanics

Author keywords

Burgers equation; Fractional differential equations; Non standard finite difference schemes; Telegraph equation; Wave equation

Indexed keywords

BURGERS EQUATIONS; FINITE DIFFERENCE SCHEME; FRACTIONAL DERIVATIVES; FRACTIONAL DIFFERENTIAL EQUATIONS; FRACTIONAL EQUATION; FRACTIONAL ORDER; FRACTIONAL TELEGRAPH EQUATIONS; FRACTIONAL WAVE EQUATION; LINEAR PARTIAL DIFFERENTIAL EQUATIONS; LINEAR SPACES; NON-STANDARD FINITE DIFFERENCE SCHEMES; NUMERICAL RESULTS; TELEGRAPH EQUATION;

EID: 79651469164     PISSN: 08981221     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.camwa.2010.12.072     Document Type: Article
Times cited : (79)

References (27)
  • 4
    • 34247212711 scopus 로고    scopus 로고
    • Remarks on fractional derivatives
    • C.P. Li, and W.H. Deng Remarks on fractional derivatives Appl. Math. Comput. 187 2007 777 784
    • (2007) Appl. Math. Comput. , vol.187 , pp. 777-784
    • Li, C.P.1    Deng, W.H.2
  • 5
    • 0036887936 scopus 로고    scopus 로고
    • Chaos, fractional kinetics, and anomalous transport
    • G.M. Zaslavsky Chaos, fractional kinetics, and anomalous transport Phys. Rep. 371 2002 461 580
    • (2002) Phys. Rep. , vol.371 , pp. 461-580
    • Zaslavsky, G.M.1
  • 7
    • 17644386529 scopus 로고    scopus 로고
    • Analytical approximate solution for fractional heat-like and wave-like equations with variable coefficients using the decomposition method
    • S. Momani Analytical approximate solution for fractional heat-like and wave-like equations with variable coefficients using the decomposition method Appl. Math. Comput. 165 2 2005 459 472
    • (2005) Appl. Math. Comput. , vol.165 , Issue.2 , pp. 459-472
    • Momani, S.1
  • 8
    • 27144506208 scopus 로고    scopus 로고
    • Analytic and approximate solutions of the space- and time-fractional telegraph equations
    • S. Momani Analytic and approximate solutions of the space- and time-fractional telegraph equations Appl. Math. Comput. 170 2005 1126 1134
    • (2005) Appl. Math. Comput. , vol.170 , pp. 1126-1134
    • Momani, S.1
  • 9
    • 38049162125 scopus 로고    scopus 로고
    • Variational iteration method for solving the space- and time-fractional KdV equation
    • S. Momani, Z. Odibat, and A. Alawneh Variational iteration method for solving the space- and time-fractional KdV equation Numer. Methods Partial Differential Equations J. 24 1 2008 262 271
    • (2008) Numer. Methods Partial Differential Equations J. , vol.24 , Issue.1 , pp. 262-271
    • Momani, S.1    Odibat, Z.2    Alawneh, A.3
  • 10
    • 70350564868 scopus 로고    scopus 로고
    • The variational iteration method: An efficient scheme for handling fractional partial differential equations in fluid mechanics
    • Z. Odibat, and S. Momani The variational iteration method: an efficient scheme for handling fractional partial differential equations in fluid mechanics Comput. Math. Appl. 58 2009 2199 2208
    • (2009) Comput. Math. Appl. , vol.58 , pp. 2199-2208
    • Odibat, Z.1    Momani, S.2
  • 11
    • 0037081673 scopus 로고    scopus 로고
    • Analysis of fractional differential equations
    • K. Diethelm, and N.J. Ford Analysis of fractional differential equations J. Math. Anal. Appl. 265 2002 229 248
    • (2002) J. Math. Anal. Appl. , vol.265 , pp. 229-248
    • Diethelm, K.1    Ford, N.J.2
  • 12
    • 0036650479 scopus 로고    scopus 로고
    • A predictorcorrector approach for the numerical solution of fractional differential equations
    • K. Diethelm, N.J. Ford, and A.D. Freed A predictorcorrector approach for the numerical solution of fractional differential equations Nonlinear Dynam. 29 2002 3 22
    • (2002) Nonlinear Dynam. , vol.29 , pp. 3-22
    • Diethelm, K.1    Ford, N.J.2    Freed, A.D.3
  • 13
    • 1842832060 scopus 로고    scopus 로고
    • Chaos in Chen's system with a fractional order
    • C.P. Li, and G.J. Peng Chaos in Chen's system with a fractional order Chaos Solitons Fractals 22 2004 443 450
    • (2004) Chaos Solitons Fractals , vol.22 , pp. 443-450
    • Li, C.P.1    Peng, G.J.2
  • 14
    • 4043121080 scopus 로고    scopus 로고
    • Detailed error analysis for a fractional Adams method
    • K. Diethelm, N.J. Ford, and A.D. Freed Detailed error analysis for a fractional Adams method Numer. Algorithms 26 2004 31 52
    • (2004) Numer. Algorithms , vol.26 , pp. 31-52
    • Diethelm, K.1    Ford, N.J.2    Freed, A.D.3
  • 15
    • 40549108274 scopus 로고    scopus 로고
    • Numerical bifurcation of predatorprey fractional differential equations with a constant rate harvesting
    • G.H. Erjaee Numerical bifurcation of predatorprey fractional differential equations with a constant rate harvesting J. Phys. Conf. Ser. 96 2007 012045
    • (2007) J. Phys. Conf. Ser. , vol.96 , pp. 012045
    • Erjaee, G.H.1
  • 17
    • 36549063424 scopus 로고    scopus 로고
    • A generalized differential transform method for linear partial differential equations of fractional order
    • DOI 10.1016/j.aml.2007.02.022, PII S0893965907001279
    • Z. Odibat, and S. Momani A generalized differential transform method for linear partial differential equations of fractional order Appl. Math. Lett. 21 2008 194 199 (Pubitemid 350181314)
    • (2008) Applied Mathematics Letters , vol.21 , Issue.2 , pp. 194-199
    • Odibat, Z.1    Momani, S.2
  • 18
    • 78649549013 scopus 로고    scopus 로고
    • On the solution set for a class of sequential fractional differential equations
    • D. Baleanu, O.G. Mustafa, and R.P. Agarwal On the solution set for a class of sequential fractional differential equations J. Phys. A: Math. 43 38 2010 385209
    • (2010) J. Phys. A: Math. , vol.43 , Issue.38 , pp. 385209
    • Baleanu, D.1    Mustafa, O.G.2    Agarwal, R.P.3
  • 19
    • 76649111047 scopus 로고    scopus 로고
    • On the global existence of solutions to a class of fractional differential equations
    • D. Baleanu, and O.G. Mustafa On the global existence of solutions to a class of fractional differential equations Comput. Math. Appl. 59 5 2010 1835 1841
    • (2010) Comput. Math. Appl. , vol.59 , Issue.5 , pp. 1835-1841
    • Baleanu, D.1    Mustafa, O.G.2
  • 21
    • 84985304745 scopus 로고
    • Exact solutions to a finite difference model of a nonlinear reactionadvection equation: Implications for numerical analysis
    • R.E. Mickens Exact solutions to a finite difference model of a nonlinear reactionadvection equation: implications for numerical analysis Numer. Methods Partial Differential Equations Fractals 5 1989 313 325
    • (1989) Numer. Methods Partial Differential Equations Fractals , vol.5 , pp. 313-325
    • Mickens, R.E.1
  • 22
    • 0025599254 scopus 로고
    • Finite difference models of ordinary differential equations: In uence of denominator models
    • R.E. Mickens, and A. Smith Finite difference models of ordinary differential equations: in uence of denominator models J. Franklin Inst. Fractals 327 1990 143 145
    • (1990) J. Franklin Inst. Fractals , vol.327 , pp. 143-145
    • Mickens, R.E.1    Smith, A.2
  • 26
    • 4444368867 scopus 로고    scopus 로고
    • Finite difference approximations for fractional advection dispersion flow equations
    • M.M. Meerschaert, and C. Tadjeran Finite difference approximations for fractional advection dispersion flow equations J. Comput. Appl. Math. 172 2003 65 77
    • (2003) J. Comput. Appl. Math. , vol.172 , pp. 65-77
    • Meerschaert, M.M.1    Tadjeran, C.2
  • 27
    • 0037284570 scopus 로고    scopus 로고
    • A nonstandard finite difference scheme for a fisher PDE having nonlinear diffusion
    • R.E. Mickens A nonstandard finite difference scheme for a fisher PDE having nonlinear diffusion Comput. Math. Appl. 45 2003 429 436
    • (2003) Comput. Math. Appl. , vol.45 , pp. 429-436
    • Mickens, R.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.