-
2
-
-
0242354999
-
Geometric and physical interpretation of fractional integration and fractional differentiation
-
Podlubny I. Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal. 2002, 5:367-386.
-
(2002)
Fract. Calc. Appl. Anal.
, vol.5
, pp. 367-386
-
-
Podlubny, I.1
-
3
-
-
84870250532
-
-
Nonlinear oscillation with fractional derivative and its applications, in: International Conference on Vibrating Engineering'98, Dalian, China
-
J. He, Nonlinear oscillation with fractional derivative and its applications, in: International Conference on Vibrating Engineering'98, Dalian, China, 1998, pp. 288-291.
-
(1998)
, pp. 288-291
-
-
He, J.1
-
4
-
-
79651469164
-
The non-standard finite difference scheme for linear fractional PDEs in fluid mechanics
-
Moaddy K., Momani S., Hashim I. The non-standard finite difference scheme for linear fractional PDEs in fluid mechanics. Comput. Math. Appl. 2011, 61:1209-1216.
-
(2011)
Comput. Math. Appl.
, vol.61
, pp. 1209-1216
-
-
Moaddy, K.1
Momani, S.2
Hashim, I.3
-
5
-
-
0347763940
-
Some applications of nonlinear fractional differential equations and their approximations
-
He J. Some applications of nonlinear fractional differential equations and their approximations. Bull. Sci. Technol. 1999, 15:86-90.
-
(1999)
Bull. Sci. Technol.
, vol.15
, pp. 86-90
-
-
He, J.1
-
6
-
-
0032307661
-
Approximate analytical solution for seepage flow with fractional derivatives in porous media
-
He J. Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comput. Methods. Appl. Mech. Eng. 1998, 167:57-68.
-
(1998)
Comput. Methods. Appl. Mech. Eng.
, vol.167
, pp. 57-68
-
-
He, J.1
-
7
-
-
0041384356
-
Chaotic dynamics of the fractional Lorenz system
-
Grigorenko I., Grigorenko E. Chaotic dynamics of the fractional Lorenz system. Phys. Rev. Lett. 2003, 91:34101-34104.
-
(2003)
Phys. Rev. Lett.
, vol.91
, pp. 34101-34104
-
-
Grigorenko, I.1
Grigorenko, E.2
-
8
-
-
0001983732
-
Fractional calculus: some basic problems in continuum and statistical mechanics
-
Springer-Verlag, New York
-
Mainardi F. Fractional calculus: some basic problems in continuum and statistical mechanics. in: Fractals and Fractional Calculus in Continuum Mechanics 1997, 291-348. Springer-Verlag, New York.
-
(1997)
in: Fractals and Fractional Calculus in Continuum Mechanics
, pp. 291-348
-
-
Mainardi, F.1
-
10
-
-
33751512215
-
Decomposition method for solving fractional Riccati differential equations
-
Momani S., Shawagfeh N.T. Decomposition method for solving fractional Riccati differential equations. Appl. Math. Comput. 2006, 182:1083-1092.
-
(2006)
Appl. Math. Comput.
, vol.182
, pp. 1083-1092
-
-
Momani, S.1
Shawagfeh, N.T.2
-
11
-
-
33750841854
-
Numerical methods for fourth-order fractional integro-differential equations
-
Momani S., Noor M.A. Numerical methods for fourth-order fractional integro-differential equations. Appl. Math. Comput. 2006, 182:754-760.
-
(2006)
Appl. Math. Comput.
, vol.182
, pp. 754-760
-
-
Momani, S.1
Noor, M.A.2
-
12
-
-
34248373867
-
Solving a multi-order fractional differential equation
-
Gejji V.D., Jafari H. Solving a multi-order fractional differential equation. Appl. Math. Comput. 2007, 189:541-548.
-
(2007)
Appl. Math. Comput.
, vol.189
, pp. 541-548
-
-
Gejji, V.D.1
Jafari, H.2
-
13
-
-
33751200976
-
Analytical approximate solution of nonlinear dynamic system containing fractional derivative by modified decomposition method
-
Ray S.S., Chaudhuri K.S., Bera R.K. Analytical approximate solution of nonlinear dynamic system containing fractional derivative by modified decomposition method. Appl. Math. Comput. 2006, 182:544-552.
-
(2006)
Appl. Math. Comput.
, vol.182
, pp. 544-552
-
-
Ray, S.S.1
Chaudhuri, K.S.2
Bera, R.K.3
-
14
-
-
33751513961
-
Numerical solutions for fractional KdV-Burgers equation by Adomian decomposition method
-
Wang Q. Numerical solutions for fractional KdV-Burgers equation by Adomian decomposition method. Appl. Math. Comput. 2006, 182:1048-1055.
-
(2006)
Appl. Math. Comput.
, vol.182
, pp. 1048-1055
-
-
Wang, Q.1
-
15
-
-
43949121726
-
The approximate and exact solutions of the space- and time-fractional Burgers equations with initial conditions by variational iteration method
-
Inc M. The approximate and exact solutions of the space- and time-fractional Burgers equations with initial conditions by variational iteration method. J. Math. Anal. Appl. 2008, 345:476-484.
-
(2008)
J. Math. Anal. Appl.
, vol.345
, pp. 476-484
-
-
Inc, M.1
-
16
-
-
33646878106
-
Analytical approach to linear fractional partial differential equations arising in fluid mechanics
-
Momani S., Odibat Z. Analytical approach to linear fractional partial differential equations arising in fluid mechanics. Phys. Lett. A 2006, 355:271-279.
-
(2006)
Phys. Lett. A
, vol.355
, pp. 271-279
-
-
Momani, S.1
Odibat, Z.2
-
17
-
-
30344464250
-
Application of variational iteration method to nonlinear differential equations of fractional order
-
Odibat Z., Momani S. Application of variational iteration method to nonlinear differential equations of fractional order. Int. J. Nonlinear Sci. Numer. Simul. 2006, 7:271-279.
-
(2006)
Int. J. Nonlinear Sci. Numer. Simul.
, vol.7
, pp. 271-279
-
-
Odibat, Z.1
Momani, S.2
-
18
-
-
34250647432
-
An approximation solution of a nonlinear equation with Riemann-Liouville's fractional derivatives by He's variational iteration method
-
Abbasbandy S. An approximation solution of a nonlinear equation with Riemann-Liouville's fractional derivatives by He's variational iteration method. J. Comput. Appl. Math. 2007, 207:53-58.
-
(2007)
J. Comput. Appl. Math.
, vol.207
, pp. 53-58
-
-
Abbasbandy, S.1
-
19
-
-
70350564868
-
The variational iteration method: an efficient scheme for handling fractional partial differential equations in fluid mechanics
-
Odibat Z., Momani S. The variational iteration method: an efficient scheme for handling fractional partial differential equations in fluid mechanics. Comput. Math. Appl. 2009, 58:2199-2208.
-
(2009)
Comput. Math. Appl.
, vol.58
, pp. 2199-2208
-
-
Odibat, Z.1
Momani, S.2
-
20
-
-
79953748504
-
Variational iteration method and homotopy perturbation method for fourth-order fractional integro-differential equations
-
Nawaz Y. Variational iteration method and homotopy perturbation method for fourth-order fractional integro-differential equations. Comput. Math. Appl. 2010, 10.1016/j.camwa.2010.10.004.
-
(2010)
Comput. Math. Appl.
-
-
Nawaz, Y.1
-
21
-
-
34247395044
-
Homotopy perturbation method for nonlinear partial differential equations of fractional order
-
Momani S., Odibat Z. Homotopy perturbation method for nonlinear partial differential equations of fractional order. Phys. Lett. A 2007, 365:345-350.
-
(2007)
Phys. Lett. A
, vol.365
, pp. 345-350
-
-
Momani, S.1
Odibat, Z.2
-
22
-
-
35349007940
-
Numerical studies for a multi-order fractional differential equation
-
Sweilam N.H., Khader M.M., Al-Bar R.F. Numerical studies for a multi-order fractional differential equation. Phys. Lett. A 2007, 371:26-33.
-
(2007)
Phys. Lett. A
, vol.371
, pp. 26-33
-
-
Sweilam, N.H.1
Khader, M.M.2
Al-Bar, R.F.3
-
23
-
-
35348869861
-
Modified homotopy perturbation method: application to quadratic Riccati differential equation of fractional order
-
Odibat Z., Momani S. Modified homotopy perturbation method: application to quadratic Riccati differential equation of fractional order. Chaos Solitons Fract. 2008, 36:167-174.
-
(2008)
Chaos Solitons Fract.
, vol.36
, pp. 167-174
-
-
Odibat, Z.1
Momani, S.2
-
24
-
-
55649102766
-
Using an enhanced homotopy perturbation method in fractional differential equations via deforming the linear part
-
Hosseinnia S., Ranjbar A., Momani S. Using an enhanced homotopy perturbation method in fractional differential equations via deforming the linear part. Comput. Math. Appl. 2008, 56:3138-3149.
-
(2008)
Comput. Math. Appl.
, vol.56
, pp. 3138-3149
-
-
Hosseinnia, S.1
Ranjbar, A.2
Momani, S.3
-
26
-
-
74249121146
-
Homotopy analysis method for solving multi-term linear and nonlinear diffusion-wave equations of fractional order
-
Jafari H., Golbabai A., Seifi S., Sayevand K. Homotopy analysis method for solving multi-term linear and nonlinear diffusion-wave equations of fractional order. Comput. Math. Appl. 2010, 59:1337-1344.
-
(2010)
Comput. Math. Appl.
, vol.59
, pp. 1337-1344
-
-
Jafari, H.1
Golbabai, A.2
Seifi, S.3
Sayevand, K.4
-
27
-
-
74149089078
-
Analytical approximate solutions of systems of fractional algebraic-differential equations by homotopy analysis method
-
Zurigat M., Momani S., Alawneh A. Analytical approximate solutions of systems of fractional algebraic-differential equations by homotopy analysis method. Comput. Math. Appl. 2010, 59:1227-1235.
-
(2010)
Comput. Math. Appl.
, vol.59
, pp. 1227-1235
-
-
Zurigat, M.1
Momani, S.2
Alawneh, A.3
-
28
-
-
33646161468
-
Numerical solution of fractional integro-differential equations by collocation method
-
Rawashdeh E. Numerical solution of fractional integro-differential equations by collocation method. Appl. Math. Comput. 2006, 176:1-6.
-
(2006)
Appl. Math. Comput.
, vol.176
, pp. 1-6
-
-
Rawashdeh, E.1
-
29
-
-
74249095517
-
A new operational matrix for solving fractional-order differential equations
-
Saadatmandi A., Dehghan M. A new operational matrix for solving fractional-order differential equations. Comput. Math. Appl. 2010, 59:1326-1336.
-
(2010)
Comput. Math. Appl.
, vol.59
, pp. 1326-1336
-
-
Saadatmandi, A.1
Dehghan, M.2
-
30
-
-
33646262074
-
Variational formulation for the stationary fractional advection dispersion equation
-
Ervin V.J., Roop J.P. Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Diff. Eq. 2005, 22:558-576.
-
(2005)
Numer. Methods Partial Diff. Eq.
, vol.22
, pp. 558-576
-
-
Ervin, V.J.1
Roop, J.P.2
-
31
-
-
33745712076
-
An approximate method for numerical solution of fractional differential equations
-
Kumar P., Agrawal O.P. An approximate method for numerical solution of fractional differential equations. Signal Process. 2006, 86:2602-2610.
-
(2006)
Signal Process.
, vol.86
, pp. 2602-2610
-
-
Kumar, P.1
Agrawal, O.P.2
-
32
-
-
1542425102
-
Numerical solution of the space fractional Fokker-Planck equation
-
Liua F., Anh V., Turner I. Numerical solution of the space fractional Fokker-Planck equation. J. Comput. Appl. Math. 2004, 166:209-219.
-
(2004)
J. Comput. Appl. Math.
, vol.166
, pp. 209-219
-
-
Liua, F.1
Anh, V.2
Turner, I.3
-
33
-
-
33646128485
-
Weighted average finite difference methods for fractional diffusion equations
-
Yuste S.B. Weighted average finite difference methods for fractional diffusion equations. J. Comput. Phys. 2006, 216:264-274.
-
(2006)
J. Comput. Phys.
, vol.216
, pp. 264-274
-
-
Yuste, S.B.1
-
34
-
-
76449113714
-
Fractional diffusion equations by the Kansa method
-
Chen W., Ye L., Su H. Fractional diffusion equations by the Kansa method. Comput. Math. Appl. 2010, 59:1614-1620.
-
(2010)
Comput. Math. Appl.
, vol.59
, pp. 1614-1620
-
-
Chen, W.1
Ye, L.2
Su, H.3
-
36
-
-
3543090402
-
Jacobi approximations in non-uniformly jacobi-weighted sobolev spaces
-
Guo B.Y., Wang L.L. Jacobi approximations in non-uniformly jacobi-weighted sobolev spaces. J. Approx. Theory 2004, 128:1-41.
-
(2004)
J. Approx. Theory
, vol.128
, pp. 1-41
-
-
Guo, B.Y.1
Wang, L.L.2
-
37
-
-
3042709180
-
Multi-order fractional differential equations and their numerical solution
-
Diethelm K., Ford N.J. Multi-order fractional differential equations and their numerical solution. Appl. Math. Comput. 2004, 154:621-640.
-
(2004)
Appl. Math. Comput.
, vol.154
, pp. 621-640
-
-
Diethelm, K.1
Ford, N.J.2
-
38
-
-
0003766476
-
-
Prentice-Hall, Englewood Cliffs, NJ
-
Canuto C., Hussaini M.Y., Quarteroni A., Zang T.A. Spectral Methods in Fluid Dynamic 1988, Prentice-Hall, Englewood Cliffs, NJ.
-
(1988)
Spectral Methods in Fluid Dynamic
-
-
Canuto, C.1
Hussaini, M.Y.2
Quarteroni, A.3
Zang, T.A.4
-
40
-
-
0012899160
-
Numerical solution of the Bagley-Torvik equation
-
Diethelm K., Ford N.J. Numerical solution of the Bagley-Torvik equation. BIT 2002, 42:490-507.
-
(2002)
BIT
, vol.42
, pp. 490-507
-
-
Diethelm, K.1
Ford, N.J.2
-
41
-
-
74149085984
-
An algorithm for the numerical solution of differential equations of fractional order
-
Odibat Z., Momani S. An algorithm for the numerical solution of differential equations of fractional order. J. Appl. Math. Inform. 2008, 26:15-27.
-
(2008)
J. Appl. Math. Inform.
, vol.26
, pp. 15-27
-
-
Odibat, Z.1
Momani, S.2
|