메뉴 건너뛰기




Volumn 37, Issue 1, 2013, Pages 62-69

Computer-aided detection of lung nodules by SVM based on 3D matrix patterns

Author keywords

Computer aided diagnosis; Lung nodule; SVM; Three dimensional matrix

Indexed keywords

COMPUTER-AIDED DETECTION; FALSE POSITIVE; LOCAL CONTEXTUAL INFORMATION; LUNG NODULE; MATRIX PATTERNS; SVM; TESTING DATA; THREE DIMENSIONAL MATRICES; THREE-DIMENSIONAL MATRIX; TOMOGRAPHIC; TRAINING SAMPLE; VOLUME OF INTEREST;

EID: 84872375037     PISSN: 08997071     EISSN: 18734499     Source Type: Journal    
DOI: 10.1016/j.clinimag.2012.02.003     Document Type: Article
Times cited : (36)

References (20)
  • 1
    • 79551700582 scopus 로고    scopus 로고
    • Computer-aided detection of early interstitial lung diseases using low-dose CT images
    • Sang CP, et al. Computer-aided detection of early interstitial lung diseases using low-dose CT images. Phys Med Biol 2011, 56:1139-1153.
    • (2011) Phys Med Biol , vol.56 , pp. 1139-1153
    • Sang, C.P.1
  • 2
    • 20744460878 scopus 로고    scopus 로고
    • Pulmonary nodules: automated detection on CT images with morphologic matching algorithm-preliminary results
    • Kyongtae T, et al. Pulmonary nodules: automated detection on CT images with morphologic matching algorithm-preliminary results. Radiology 2005, 236:286-294.
    • (2005) Radiology , vol.236 , pp. 286-294
    • Kyongtae, T.1
  • 3
    • 75849153966 scopus 로고    scopus 로고
    • Feature selection and performance evaluation of support vector machine (SVM)-based classifier for differentiating benign and malignant pulmonary nodules by computed tomography
    • Zhu YJ, et al. Feature selection and performance evaluation of support vector machine (SVM)-based classifier for differentiating benign and malignant pulmonary nodules by computed tomography. J Digit Imaging 2010, 23:51-65.
    • (2010) J Digit Imaging , vol.23 , pp. 51-65
    • Zhu, Y.J.1
  • 4
    • 63649100143 scopus 로고    scopus 로고
    • Markerless gating for lung cancer radiotherapy based on machine learning techniques
    • Tong L, et al. Markerless gating for lung cancer radiotherapy based on machine learning techniques. Phys Med Biol 2009, 54:1555-1563.
    • (2009) Phys Med Biol , vol.54 , pp. 1555-1563
    • Tong, L.1
  • 5
    • 33645886615 scopus 로고    scopus 로고
    • Pulmonary nodule detection in CT images with quantized convergence index filter
    • Matsumoto S, et al. Pulmonary nodule detection in CT images with quantized convergence index filter. Med Image Anal 2006, 10:343-352.
    • (2006) Med Image Anal , vol.10 , pp. 343-352
    • Matsumoto, S.1
  • 6
    • 62949102804 scopus 로고    scopus 로고
    • Development of an automatic classification system for differentiation of obstructive lung disease using HRCT
    • Namkug K, et al. Development of an automatic classification system for differentiation of obstructive lung disease using HRCT. J Digit Imaging 2009, 22:136-148.
    • (2009) J Digit Imaging , vol.22 , pp. 136-148
    • Namkug, K.1
  • 7
    • 25144514408 scopus 로고    scopus 로고
    • Computer-aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artificial neural network
    • Suzuki K, et al. Computer-aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artificial neural network. IEEE Trans Med Imaging 2005, 24:1138-1150.
    • (2005) IEEE Trans Med Imaging , vol.24 , pp. 1138-1150
    • Suzuki, K.1
  • 8
    • 70449516643 scopus 로고    scopus 로고
    • Detection of small pulmonary nodules on chest radiographs: effect of rib suppression by the massive training artificial neural network (MTANN) technique on the performance of radiologists
    • Oda S, Suzuki K, et al. Detection of small pulmonary nodules on chest radiographs: effect of rib suppression by the massive training artificial neural network (MTANN) technique on the performance of radiologists. Am J Roentgenol 2009, 193:W397-W402.
    • (2009) Am J Roentgenol , vol.193
    • Oda, S.1    Suzuki, K.2
  • 9
    • 78149266353 scopus 로고    scopus 로고
    • Massive-training artificial neural network coupled with Laplacian-eigenfunction-based dimensionality reduction for computer-aided detection of polyps in CT colonography
    • Suzuki K, et al. Massive-training artificial neural network coupled with Laplacian-eigenfunction-based dimensionality reduction for computer-aided detection of polyps in CT colonography. IEEE Trans Med Imaging 2010, 29:1907-1917.
    • (2010) IEEE Trans Med Imaging , vol.29 , pp. 1907-1917
    • Suzuki, K.1
  • 10
    • 79953663112 scopus 로고    scopus 로고
    • Development and evaluation of a computer-aided diagnostic scheme for lung nodule detection in chest radiographs by means of two-stage nodule enhancement with support vector classification
    • Shen C, Suzuki K, et al. Development and evaluation of a computer-aided diagnostic scheme for lung nodule detection in chest radiographs by means of two-stage nodule enhancement with support vector classification. Med Phys 2011, 38(4):1844-1858.
    • (2011) Med Phys , vol.38 , Issue.4 , pp. 1844-1858
    • Shen, C.1    Suzuki, K.2
  • 11
    • 79953671750 scopus 로고    scopus 로고
    • Massive-training support vector regression and Gaussian process for false-positive reduction in computer-aided detection of polyps in CT colonography
    • Jian WX, Suzuki K, et al. Massive-training support vector regression and Gaussian process for false-positive reduction in computer-aided detection of polyps in CT colonography. Med Phys 2011, 38(4):1888-1902.
    • (2011) Med Phys , vol.38 , Issue.4 , pp. 1888-1902
    • Jian, W.X.1    Suzuki, K.2
  • 12
    • 58149295956 scopus 로고    scopus 로고
    • Performance testing of several classifiers for differentiating obstructive lung diseases based on texture analysis at high-resolution computerized tomography (HRCT)
    • Youngjoo L, et al. Performance testing of several classifiers for differentiating obstructive lung diseases based on texture analysis at high-resolution computerized tomography (HRCT). Comput Methods Programs Biomed 2009, 93:206-215.
    • (2009) Comput Methods Programs Biomed , vol.93 , pp. 206-215
    • Youngjoo, L.1
  • 13
    • 83255173443 scopus 로고    scopus 로고
    • A texton-based approach for the classification of lung parenchyma in CT images
    • Mechrdad J, et al. A texton-based approach for the classification of lung parenchyma in CT images. Proc MICCAI 2010, 595-602.
    • (2010) Proc MICCAI , pp. 595-602
    • Mechrdad, J.1
  • 14
    • 67650862815 scopus 로고    scopus 로고
    • Shape-based computer-aided detection of lung nodules in thoracic CT images
    • Xujiong Y, et al. Shape-based computer-aided detection of lung nodules in thoracic CT images. IEEE Trans Biomed Eng 2009, 56:1810-1820.
    • (2009) IEEE Trans Biomed Eng , vol.56 , pp. 1810-1820
    • Xujiong, Y.1
  • 15
    • 34547544292 scopus 로고    scopus 로고
    • New least squares support vector machines based on matrix patterns
    • Wang Z, et al. New least squares support vector machines based on matrix patterns. Neural Process Lett 2007, 26:41-56.
    • (2007) Neural Process Lett , vol.26 , pp. 41-56
    • Wang, Z.1
  • 16
    • 84872396418 scopus 로고    scopus 로고
    • 3D matrix pattern based support vector machines for identifying pulmonary cancer in CT scanned images
    • Online first
    • Wang QZ, et al. 3D matrix pattern based support vector machines for identifying pulmonary cancer in CT scanned images. J Med Syst 2010, 9. Online first.
    • (2010) J Med Syst , pp. 9
    • Wang, Q.Z.1
  • 17
    • 84857048294 scopus 로고    scopus 로고
    • Automated detection of lung nodules in computed tomography images: a review
    • Lee SLA, et al. Automated detection of lung nodules in computed tomography images: a review. Mach Vis Appl 2012, 25:151-163.
    • (2012) Mach Vis Appl , vol.25 , pp. 151-163
    • Lee, S.L.A.1
  • 18
    • 39449138377 scopus 로고    scopus 로고
    • 3D segmentation algorithm of small lung nodules in spiral CT images
    • Diciotti S, et al. 3D segmentation algorithm of small lung nodules in spiral CT images. IEEE Trans Inf Technol Biomed 2008, 12:7-19.
    • (2008) IEEE Trans Inf Technol Biomed , vol.12 , pp. 7-19
    • Diciotti, S.1
  • 19
    • 84872389934 scopus 로고    scopus 로고
    • Computerized detection of pulmonary nodules on CT scans
    • Samuel GA, et al. Computerized detection of pulmonary nodules on CT scans. Radiol Graph 1999, 19:1301-1311.
    • (1999) Radiol Graph , vol.19 , pp. 1301-1311
    • Samuel, G.A.1
  • 20
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Suykens J, et al. Least squares support vector machine classifiers. Neural Process Lett 1999, 9:293-300.
    • (1999) Neural Process Lett , vol.9 , pp. 293-300
    • Suykens, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.