메뉴 건너뛰기




Volumn 22, Issue 2, 2009, Pages 136-148

Development of an automatic classification system for differentiation of obstructive lung disease using HRCT

Author keywords

Bayesian classifier; Classifier optimization; Emphysema; Machine learning; Obstructive lung disease; Shape analysis; Support vector machine; Texture analysis

Indexed keywords

BAYESIAN CLASSIFIER; EMPHYSEMA; MACHINE LEARNING; OBSTRUCTIVE LUNG DISEASE; SHAPE ANALYSIS; SUPPORT VECTOR MACHINE; TEXTURE ANALYSIS;

EID: 62949102804     PISSN: 08971889     EISSN: 1618727X     Source Type: Journal    
DOI: 10.1007/s10278-008-9147-7     Document Type: Article
Times cited : (47)

References (24)
  • 3
    • 19044383038 scopus 로고    scopus 로고
    • A study on several machine-learning methods for classification of malignant and benign clustered microcalcifications
    • L Wei Y Yang RM Nishikawa Y Jiang 2005 A study on several machine-learning methods for classification of malignant and benign clustered microcalcifications IEEE Trans Med Imaging 24 3 371 380
    • (2005) IEEE Trans Med Imaging , vol.24 , Issue.3 , pp. 371-380
    • Wei, L.1    Yang, Y.2    Nishikawa, R.M.3    Jiang, Y.4
  • 4
    • 0041428219 scopus 로고    scopus 로고
    • Obstructive lung diseases: Texture classification for differentiation at CT
    • F Chabat GZ Yang DM Hansell 2003 Obstructive lung diseases: texture classification for differentiation at CT Radiology 228 3 871 877
    • (2003) Radiology , vol.228 , Issue.3 , pp. 871-877
    • Chabat, F.1    Yang, G.Z.2    Hansell, D.M.3
  • 5
    • 33745949494 scopus 로고    scopus 로고
    • Computer-aided classification of interstitial lung diseases Via MDCT: 3D Adaptive Multiple Feature Method (3D AMFM)
    • Y Xu EJ van Beek Y Hwanjo J Guo G McLennan EA Hoffman 2006 Computer-aided classification of interstitial lung diseases Via MDCT: 3D Adaptive Multiple Feature Method (3D AMFM) Acad Radiol 13 8 969 978
    • (2006) Acad Radiol , vol.13 , Issue.8 , pp. 969-978
    • Xu, Y.1    Van Beek, E.J.2    Hwanjo, Y.3    Guo, J.4    McLennan, G.5    Hoffman, E.A.6
  • 6
    • 0034281869 scopus 로고    scopus 로고
    • Boundary modeling and shape analysis methods for classification of mammographic masses
    • RM Rangayyan NR Mudigonda JE Desautels 2000 Boundary modeling and shape analysis methods for classification of mammographic masses Med Biol Eng Comput 38 487 496
    • (2000) Med Biol Eng Comput , vol.38 , pp. 487-496
    • Rangayyan, R.M.1    Mudigonda, N.R.2    Desautels, J.E.3
  • 8
    • 27744522078 scopus 로고    scopus 로고
    • Computer-aided diagnosis: A shape classification of pulmonary nodules imaged by high-resolution CT
    • S Iwano T Nakamura Y Kamioka T Ishigaki 2005 Computer-aided diagnosis: a shape classification of pulmonary nodules imaged by high-resolution CT Comput Med Imaging Graph 29 7 565 570
    • (2005) Comput Med Imaging Graph , vol.29 , Issue.7 , pp. 565-570
    • Iwano, S.1    Nakamura, T.2    Kamioka, Y.3    Ishigaki, T.4
  • 9
    • 62949136988 scopus 로고    scopus 로고
    • 2 Prentice Hall New Jersey
    • Gonzalez RC, Woods RE: Digital Image Processing, 2nd edition. New Jersey: Prentice Hall, 2002, pp. 532-534
    • (2002) , pp. 532-534
    • Gonzalez, R.C.1    Woods, R.E.2
  • 10
    • 0004493166 scopus 로고    scopus 로고
    • On the approximation of minimizing non zero variables or unsatisfied relations in linear systems
    • E Amaldi V Kann 1998 On the approximation of minimizing non zero variables or unsatisfied relations in linear systems Theor Comput Sci 209 237 260
    • (1998) Theor Comput Sci , vol.209 , pp. 237-260
    • Amaldi, E.1    Kann, V.2
  • 11
    • 0002774069 scopus 로고
    • Feature set search algorithms. Pattern recognition and signal processing
    • Kittler J: Feature set search algorithms. Pattern recognition and signal processing. Sijtho and Noordho 41-60, 1978
    • (1978) Sijtho and Noordho , pp. 41-60
    • Kittler, J.1
  • 12
    • 33745176982 scopus 로고    scopus 로고
    • Binning strategies evaluation for tissue classification in computed tomography images
    • S Handrick B Naimipour JD Furst DS Raicu 2006 Binning strategies evaluation for tissue classification in computed tomography images Proc SPIE Med Imaging 6144 1476 1486
    • (2006) Proc SPIE Med Imaging , vol.6144 , pp. 1476-1486
    • Handrick, S.1    Naimipour, B.2    Furst, J.D.3    Raicu, D.S.4
  • 13
    • 62949116881 scopus 로고    scopus 로고
    • Springer-Verlag New York
    • Vapnik VN: The Nature of Statistical Learning Theory, New York: Springer-Verlag, 2006
    • (2006)
    • Vapnik, V.N.1
  • 15
    • 62949104338 scopus 로고    scopus 로고
    • McGraw-Hill New York
    • Mitchell T: Machine Learning, New York: McGraw-Hill, 1997
    • (1997)
    • Mitchell, T.1
  • 16
    • 84864154305 scopus 로고    scopus 로고
    • MIT-Press Cambridge, MA
    • Joachims T, Schölkopf B, Burges C, Smola A: Making large-scale SVM learning practical. Advances in Kernel methods - support vector learning, Cambridge, MA: MIT-Press, 1999
    • (1999)
    • Joachims, T.1    Schölkopf, B.2    Burges, C.3    Smola, A.4
  • 18
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • CJC Burges 1998 A tutorial on support vector machines for pattern recognition Data Mining Knowledge Discovery 2 2 121 167
    • (1998) Data Mining Knowledge Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 19
    • 0003087641 scopus 로고    scopus 로고
    • Using SVMs for text categorization
    • ST Dumais 1998 Using SVMs for text categorization IEEE Intell Syst 13 4 21 23
    • (1998) IEEE Intell Syst , vol.13 , Issue.4 , pp. 21-23
    • Dumais, S.T.1
  • 20
    • 84864155946 scopus 로고    scopus 로고
    • MIT Press Cambridge, MA
    • Burges CJC, Schölkopf B: Improving the accuracy and speed of support vector learning machine, Cambridge, MA: MIT Press, 1997
    • (1997)
    • Burges, C.J.C.1    Schölkopf, B.2
  • 21
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • TS Furey N Cristianini N Duffy DW Bednarski M Schummer D Haussler 2000 Support vector machine classification and validation of cancer tissue samples using microarray expression data Bioinformatics 16 906 914
    • (2000) Bioinformatics , vol.16 , pp. 906-914
    • Furey, T.S.1    Cristianini, N.2    Duffy, N.3    Bednarski, D.W.4    Schummer, M.5    Haussler, D.6
  • 22
    • 0035014847 scopus 로고    scopus 로고
    • Multi-class protein fold recognition using support vector machines and neural networks
    • CHQ Ding I Dubchak 2001 Multi-class protein fold recognition using support vector machines and neural networks Bioinformatics 16 349 358
    • (2001) Bioinformatics , vol.16 , pp. 349-358
    • Ding, C.H.Q.1    Dubchak, I.2
  • 24
    • 62949202971 scopus 로고    scopus 로고
    • Wiley, NY New York
    • Schurmann J: Pattern classification: a unified view of statistical and neural approaches, New York: Wiley, NY, 1996
    • (1996)
    • Schurmann, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.