메뉴 건너뛰기




Volumn 19, Issue 5, 2012, Pages 800-808

Automatic discourse connective detection in biomedical text

Author keywords

[No Author keywords available]

Indexed keywords

ACCURACY; ARTICLE; INFORMATION PROCESSING; MACHINE LEARNING; MEDICAL INFORMATION SYSTEM; MEDICAL LITERATURE; SCORING SYSTEM; SUPPORT VECTOR MACHINE; WORD LIST RECALL; ARTIFICIAL INTELLIGENCE; DATA MINING; HUMAN; METHODOLOGY; NATURAL LANGUAGE PROCESSING;

EID: 84872244355     PISSN: 10675027     EISSN: 1527974X     Source Type: Journal    
DOI: 10.1136/amiajnl-2011-000775     Document Type: Article
Times cited : (20)

References (46)
  • 1
    • 84855976343 scopus 로고    scopus 로고
    • Coreference resolution: a review of general methodologies and applications in the clinical domain
    • Zheng J, Chapman WW, Crowley RS, et al. Coreference resolution: a review of general methodologies and applications in the clinical domain. J Biomed Inform 2011;44:1113-22.
    • (2011) J Biomed Inform , vol.44 , pp. 1113-22
    • Zheng, J.1    Chapman, W.W.2    Crowley, R.S.3
  • 2
    • 85037060758 scopus 로고    scopus 로고
    • The penn discourse treebank 2.0. Proceedings of the 6th International Conference on Language Resources and Evaluation (LREC 2008)
    • with the collaboration of major international institutions and organisations
    • Prasad R, Dinesh N, Lee A, et al. The penn discourse treebank 2.0. Proceedings of the 6th International Conference on Language Resources and Evaluation (LREC 2008). Marrakech, Morocco, 2008:2961-8. Organised by ELRA, the European Language Resources Association, with the collaboration of major international institutions and organisations.
    • (2008) Marrakech, Morocco: Organised by ELRA, the European Language Resources Association , pp. 2961-8
    • Prasad, R.1    Dinesh, N.2    Lee, A.3
  • 3
    • 4244199799 scopus 로고    scopus 로고
    • Improving summarization through rhetorical parsing tuning
    • New Brunswick, NY: The Association for Computational Linguistics SIGDAT
    • Marcu D. Improving summarization through rhetorical parsing tuning. In: The 6th Workshop on Very Large Corpora; Montreal, Canada. New Brunswick, NY: The Association for Computational Linguistics SIGDAT, 1998:206-15.
    • (1998) The 6th Workshop on Very Large Corpora; Montreal, Canada , pp. 206-15
    • Marcu, D.1
  • 4
    • 0027677780 scopus 로고
    • Automated discourse generation using discourse structure relations
    • Hovy EH. Automated discourse generation using discourse structure relations. In: Artificial Intelligence, Volume 63. 1993:341-85.
    • (1993) Artificial Intelligence , vol.63 , pp. 341-85
    • Hovy, E.H.1
  • 5
    • 52149121856 scopus 로고    scopus 로고
    • Generating dialogues for virtual agents using nested textual coherence relations
    • Tokyo, Japan. Tokyo, Japan: International Information Science Foundation,
    • Hernault H, Piwek P, Prendinger H, et al. Generating dialogues for virtual agents using nested textual coherence relations. Proceedings of the 8th International Conference on Intelligent Virtual Agents; Tokyo, Japan. Tokyo, Japan: International Information Science Foundation, 2008:139-45.
    • (2008) Proceedings of the 8th International Conference on Intelligent Virtual Agents , pp. 139-45
    • Hernault, H.1    Piwek, P.2    Prendinger, H.3
  • 6
    • 84860520895 scopus 로고    scopus 로고
    • Structured models for fine-to-coarse sentiment analysis
    • Prague, Czech Republic. New Brunswick, NY: The Association for Computational Linguistics
    • McDonald R, Hannan K, Neylon T, et al. Structured models for fine-to-coarse sentiment analysis. Annual Meeting-Association For Computational Linguistics, Volume 45; Prague, Czech Republic. New Brunswick, NY: The Association for Computational Linguistics, 2007:432.
    • (2007) Annual Meeting-Association For Computational Linguistics , vol.41 , pp. 432
    • Mcdonald, R.1    Hannan, K.2    Neylon, T.3
  • 7
    • 84856451860 scopus 로고    scopus 로고
    • Question generation from paragraphs at UPenn: QGSTEC system description
    • The Third Workshop on Question Generation. Pittsburgh, Pennsylvania, USA, 2010
    • Mannem P, Prasad R, Joshi A. Question generation from paragraphs at UPenn: QGSTEC system description. Proceedings of QG2010: The Third Workshop on Question Generation. Pittsburgh, Pennsylvania, USA, 2010:84-91.
    • (2010) Proceedings of QG , pp. 84-91
    • Mannem, P.1    Prasad, R.2    Joshi, A.3
  • 11
    • 70349473063 scopus 로고    scopus 로고
    • Automatically extracting cancer disease characteristics from pathology reports into a Disease Knowledge Representation Model
    • Coden A, Savova G, Sominsky I, et al. Automatically extracting cancer disease characteristics from pathology reports into a Disease Knowledge Representation Model. J Biomed Inform 2009;42:937-49.
    • (2009) J Biomed Inform , vol.42 , pp. 937-49
    • Coden, A.1    Savova, G.2    Sominsky, I.3
  • 12
    • 70349466623 scopus 로고    scopus 로고
    • Building a semantically annotated corpus of clinical texts
    • Roberts A, Gaizauskas R, Hepple M, et al. Building a semantically annotated corpus of clinical texts. J Biomed Inform 2009;42:950-66.
    • (2009) J Biomed Inform , vol.42 , pp. 950-66
    • Roberts, A.1    Gaizauskas, R.2    Hepple, M.3
  • 14
    • 84873817489 scopus 로고    scopus 로고
    • New Brunswick
    • A novel discourse parser based on support vector machine classification. Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP: Singapore.
    • Duverle DA, Prendinger H. A novel discourse parser based on support vector machine classification. Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP: Volume 2; Singapore. New Brunswick, NY: The Association for Computational Linguistics, 2009:665-73.
    • (2009) NY: The Association for Computational Linguistics , vol.2 , pp. 665-73
    • Duverle, D.A.1    Prendinger, H.2
  • 19
    • 29244479649 scopus 로고    scopus 로고
    • The language of bioscience: facts, speculations, and statements in between
    • Workshop on Linking Biological Literature, Ontologies and Databases: Tools for Users. Boston, Massachusetts, 2004
    • Light M, Qiu XY, Srinivasan P. The language of bioscience: facts, speculations, and statements in between. Proceedings of BioLink 2004 Workshop on Linking Biological Literature, Ontologies and Databases: Tools for Users. Boston, Massachusetts, 2004:17-24.
    • (2004) Proceedings of BioLink , pp. 17-24
    • Light, M.1    Qiu, X.Y.2    Srinivasan, P.3
  • 20
    • 60749127748 scopus 로고    scopus 로고
    • A baseline feature set for learning rhetorical zones using full articles in the biomedical domain
    • ACM SIGKDD Explorations Newsletter, New York, NY, USA: ACM,
    • Mullen T, Mizuta Y, Collier N. A baseline feature set for learning rhetorical zones using full articles in the biomedical domain. In: ACM SIGKDD Explorations Newsletter, Volume 7. New York, NY, USA: ACM, 2005:52-8.
    • (2005) , vol.7 , pp. 52-8
    • Mullen, T.1    Mizuta, Y.2    Collier, N.3
  • 21
    • 80053410932 scopus 로고    scopus 로고
    • Towards discipline-independent argumentative zoning: evidence from chemistry and computational linguistics
    • New Brunswick, NY The Association for Computational Linguistics SIGDAT
    • Teufel S, Siddharthan A, Batchelor C. Towards discipline-independent argumentative zoning: evidence from chemistry and computational linguistics. Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing: Volume 3; Singapore. New Brunswick, NY: The Association for Computational Linguistics SIGDAT, 2009:1493-502.
    • (2009) Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing: Singapore , vol.3 , pp. 1493-502
    • Teufel, S.1    Siddharthan, A.2    Batchelor, C.3
  • 22
    • 33749679641 scopus 로고    scopus 로고
    • Merging corpus linguistic and discourse analytic research goals: discourse units in biology research articles
    • Biber D, Jones JK. Merging corpus linguistic and discourse analytic research goals: discourse units in biology research articles. Corpus Linguistics and Linguistic Theory 2005;1:151-82.
    • (2005) Corpus Linguistics and Linguistic Theory , vol.1 , pp. 151-82
    • Biber, D.1    Jones, J.K.2
  • 23
    • 85032610029 scopus 로고    scopus 로고
    • The BioScope corpus: annotation for negation, uncertainty and their scope in biomedical texts
    • Columbus, Ohio. New Brunswick, NY: The Association for Computational Linguistics,
    • Szarvas G, Vincze V, Farkas R, et al. The BioScope corpus: annotation for negation, uncertainty and their scope in biomedical texts. Proceedings of the Workshop on Current Trends in Biomedical Natural Language Processing; Columbus, Ohio. New Brunswick, NY: The Association for Computational Linguistics, 2008:38-45.
    • (2008) Proceedings of the Workshop on Current Trends in Biomedical Natural Language Processing , pp. 38-45
    • Szarvas, G.1    Vincze, V.2    Farkas, R.3
  • 24
    • 78650479527 scopus 로고    scopus 로고
    • Biomedical negation scope detection with conditional random fields
    • Agarwal S, Yu H. Biomedical negation scope detection with conditional random fields. J Am Med Inform Assoc 2010;17:696.
    • (2010) J Am Med Inform Assoc , vol.17 , pp. 696
    • Agarwal, S.1    Yu, H.2
  • 25
    • 78649330236 scopus 로고    scopus 로고
    • Detecting hedge cues and their scope in biomedical literature with conditional random fields
    • Agarwal S, Yu H. Detecting hedge cues and their scope in biomedical literature with conditional random fields. J Biomed Inform 2010;43:953-61.
    • (2010) J Biomed Inform , vol.43 , pp. 953-61
    • Agarwal, S.1    Yu, H.2
  • 26
    • 79956216619 scopus 로고    scopus 로고
    • The biomedical discourse relation bank
    • Prasad R, McRoy S, Frid N, et al. The biomedical discourse relation bank. BMC Bioinformatics 2011;12:188.
    • (2011) BMC Bioinformatics , vol.12 , pp. 188
    • Prasad, R.1    Mcroy, S.2    Frid, N.3
  • 27
    • 79960003373 scopus 로고    scopus 로고
    • A pilot annotation to investigate discourse connectivity in biomedical text
    • Columbus, Ohio. New Brunswick, NY: The Association for Computational Linguistics
    • Yu H, Frid N, McRoy S, et al. A pilot annotation to investigate discourse connectivity in biomedical text. Proceedings of the Workshop on Current Trends in Biomedical Natural Language Processing; Columbus, Ohio. New Brunswick, NY: The Association for Computational Linguistics, 2008:92-3.
    • (2008) Proceedings of the Workshop on Current Trends in Biomedical Natural Language Processing , pp. 92-3
    • Yu, H.1    Frid, N.2    Mcroy, S.3
  • 29
    • 84873873069 scopus 로고    scopus 로고
    • Discovering paradigm shift patterns in biomedical abstracts: application to neurodegenerative diseases.
    • Organised by the EU Network of Excellence Semantic Mining and the European Bioinformatics Institute (EBI).
    • Lisacek F, Chichester C, Kaplan A, et al. Discovering paradigm shift patterns in biomedical abstracts: application to neurodegenerative diseases. In: First International Symposium on Semantic Mining in Biomedicine. Hinxton, Cambridgeshire, UK, 2005:11-13. Organised by the EU Network of Excellence Semantic Mining and the European Bioinformatics Institute (EBI).
    • First International Symposium on Semantic Mining in Biomedicine. Hinxton, Cambridgeshire, UK, 2005:11-13
    • Lisacek, F.1    Chichester, C.2    Kaplan, A.3
  • 30
    • 79959665991 scopus 로고    scopus 로고
    • Anaphoric relations in the clinical narrative: corpus creation
    • Savova GK, Chapman WW, Zheng J, et al. Anaphoric relations in the clinical narrative: corpus creation. J Am Med Inform Assoc 2011;18:459.
    • (2011) J Am Med Inform Assoc , vol.18 , pp. 459
    • Savova, G.K.1    Chapman, W.W.2    Zheng, J.3
  • 32
    • 79960016754 scopus 로고    scopus 로고
    • Identifying discourse connectives in biomedical text
    • Ramesh BP, Yu H. Identifying discourse connectives in biomedical text. AMIA Ann Symp Proc 2010;2010:657-61.
    • (2010) AMIA Ann Symp Proc , vol.2010 , pp. 657-61
    • Ramesh, B.P.1    Yu, H.2
  • 33
    • 34249852033 scopus 로고
    • Building a large annotated corpus of English: the penn treebank
    • Marcus MP, Marcinkiewicz MA, Santorini B. Building a large annotated corpus of English: the penn treebank. Comput Ling 1993;19:313-30.
    • (1993) Comput Ling , vol.19 , pp. 313-30
    • Marcus, M.P.1    Marcinkiewicz, M.A.2    Santorini, B.3
  • 34
    • 33645983416 scopus 로고    scopus 로고
    • The proposition bank: an annotated corpus of semantic roles
    • Palmer M, Gildea D, Kingsbury P. The proposition bank: an annotated corpus of semantic roles. Comput Ling 2005;31:71-106.
    • (2005) Comput Ling , vol.31 , pp. 71-106
    • Palmer, M.1    Gildea, D.2    Kingsbury, P.3
  • 36
    • 4944229711 scopus 로고    scopus 로고
    • GENIA corpusda semantically annotated corpus for bio-textmining
    • Kim JD, Ohta T, Tateisi Y, et al. GENIA corpusda semantically annotated corpus for bio-textmining. Bioinformatics 2003;19(Suppl 1):i180-2.
    • (2003) Bioinformatics , vol.19
    • Kim, J.D.1    Ohta, T.2    Tateisi, Y.3
  • 37
    • 67949095857 scopus 로고    scopus 로고
    • The textual characteristics of traditional and Open Access scientific journals are similar
    • Verspoor K, Cohen KB, Hunter L. The textual characteristics of traditional and Open Access scientific journals are similar. BMC Bioinformatics 2009;10:183.
    • (2009) BMC Bioinformatics , vol.10 , pp. 183
    • Verspoor, K.1    Cohen, K.B.2    Hunter, L.3
  • 39
    • 25144520247 scopus 로고    scopus 로고
    • ABNER: an open source tool for automatically tagging genes, proteins and other entity names in text
    • Settles B. ABNER: an open source tool for automatically tagging genes, proteins and other entity names in text. Bioinformatics 2005;21:3191.
    • (2005) Bioinformatics , vol.21 , pp. 3191
    • Settles, B.1
  • 40
    • 0042868698 scopus 로고    scopus 로고
    • Support vector machine active learning with applications to text classification
    • Tong S, Koller D. Support vector machine active learning with applications to text classification. J Mach Learn Res 2002;2:45-66.
    • (2002) J Mach Learn Res , vol.2 , pp. 45-66
    • Tong, S.1    Koller, D.2
  • 41
    • 84957069814 scopus 로고    scopus 로고
    • Text categorization with support vector machines: learning with many relevant features
    • Machine Learning: ECML-98. Chemnitz, Germany
    • Joachims T. Text categorization with support vector machines: learning with many relevant features. In: Machine Learning: ECML-98. Chemnitz, Germany, 1998:137-42.
    • (1998) , pp. 137-42
    • Joachims, T.1
  • 42
    • 77954203449 scopus 로고    scopus 로고
    • Any domain parsing: automatic domain adaptation for natural language parsing
    • Ph. D. thesis, Department of Computer Science, Brown University. Providence, Rhode Island, USA,
    • McClosky D. Any domain parsing: automatic domain adaptation for natural language parsing. In: Ph. D. thesis, Department of Computer Science, Brown University. Providence, Rhode Island, USA, 2009.
    • (2009)
    • Mcclosky, D.1
  • 43
    • 40549140499 scopus 로고    scopus 로고
    • BANNER: an executable survey of advances in biomedical named entity recognition
    • Leaman R, Gonzalez G. BANNER: an executable survey of advances in biomedical named entity recognition. Pac Symp Biocomput 2008;13:652-63.
    • (2008) Pac Symp Biocomput , vol.13 , pp. 652-63
    • Leaman, R.1    Gonzalez, G.2
  • 44
    • 77949431037 scopus 로고    scopus 로고
    • LINNAEUS: a species name identification system for biomedical literature
    • Gerner M, Nenadic G, Bergman CM. LINNAEUS: a species name identification system for biomedical literature. BMC Bioinformatics 2010;11:85.
    • (2010) BMC Bioinformatics , vol.11 , pp. 85
    • Gerner, M.1    Nenadic, G.2    Bergman, C.M.3
  • 45
    • 0345863927 scopus 로고    scopus 로고
    • The unified medical language system (UMLS): integrating biomedical terminology
    • Bodenreider O. The unified medical language system (UMLS): integrating biomedical terminology. Nucleic Acids Res 2004;32:D267-70.
    • (2004) Nucleic Acids Res , vol.32
    • Bodenreider, O.1
  • 46
    • 77951972961 scopus 로고    scopus 로고
    • Domain adaptation for semantic role labeling in the biomedical domain
    • Dahlmeier D, Ng HT. Domain adaptation for semantic role labeling in the biomedical domain. Bioinformatics 2010;26:1098-104
    • (2010) Bioinformatics , vol.26 , pp. 1098-1104
    • Dahlmeier, D.1    Ng, H.T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.