메뉴 건너뛰기




Volumn 22, Issue 2, 2013, Pages 561-572

Unsupervised amplitude and texture classification of SAR images with multinomial latent model

Author keywords

Classification; classification expectation maximization (CEM); COSMO SkyMed; high resolution synthetic aperture radar (SAR); Jensen Shannon criterion; multinomial logistic; TerraSAR X; texture

Indexed keywords

COSMO-SKYMED; EXPECTATION MAXIMIZATION; HIGH RESOLUTION SYNTHETIC APERTURE RADAR; JENSEN-SHANNON CRITERION; MULTINOMIALS; TERRASAR-X;

EID: 84872239451     PISSN: 10577149     EISSN: None     Source Type: Journal    
DOI: 10.1109/TIP.2012.2219545     Document Type: Article
Times cited : (73)

References (76)
  • 2
    • 0020150410 scopus 로고
    • Classification of agricultural crops in radar images
    • Jul
    • P. Hoogeboom, "Classification of agricultural crops in radar images," IEEE Trans. Geosci. Remote Sens., vol. 21, no. 3, pp. 329-336, Jul. 1983.
    • (1983) IEEE Trans. Geosci. Remote Sens. , vol.21 , Issue.3 , pp. 329-336
    • Hoogeboom, P.1
  • 6
    • 0027591549 scopus 로고
    • SEM algorithm and unsupervised statistical segmentation of satellite images
    • DOI 10.1109/36.225529
    • P. Masson and W. Pieczynski, "SEM algorithm and unsupervised statistical segmentation of satellite images," IEEE Trans. Geosci. Remote Sens., vol. 31, no. 3, pp. 618-633, May 1993. (Pubitemid 23697387)
    • (1993) IEEE Transactions on Geoscience and Remote Sensing , vol.31 , Issue.3 , pp. 618-633
    • Masson Pascale1    Pieczynski Wojciech2
  • 7
    • 0036400470 scopus 로고    scopus 로고
    • Gamma mixture modeled with second kind statistics: Application to SAR image processing
    • J. M. Nicolas and F. Tupin "Gamma mixture modeled with second kind statistics: Application to SAR image processing," in Proc. Int. Geosci. Remote Sens. Symp., Toronto, ON, Canada, Jun. 2002, pp. 2489-2491. (Pubitemid 35228668)
    • (2002) International Geoscience and Remote Sensing Symposium (IGARSS) , vol.4 , pp. 2489-2491
    • Nicolas, J.M.1    Tupin, F.2
  • 8
    • 31344481921 scopus 로고    scopus 로고
    • Dictionary-based stochastic expectation-maximization for SAR amplitude probability density function estimation
    • Jan
    • G. Moser, J. Zerubia, and S. B. Serpico, "Dictionary-based stochastic expectation-maximization for SAR amplitude probability density function estimation," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 1, pp. 188-199, Jan. 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.1 , pp. 188-199
    • Moser, G.1    Zerubia, J.2    Serpico, S.B.3
  • 9
    • 65649102654 scopus 로고    scopus 로고
    • Dictionary-based probability density function estimation for high resolution SAR data
    • Jan.
    • V. A. Krylov, G. Moser, S. B. Serpico, and J. Zerubia, "Dictionary-based probability density function estimation for high resolution SAR data," Proc. SPIE, IS&T Electron. Imag., vol. 7246, p. 72460S, Jan. 2009.
    • (2009) Proc. SPIE, IS&T Electron. Imag. , vol.7246
    • Krylov, V.A.1    Moser, G.2    Serpico, S.B.3    Zerubia, J.4
  • 11
    • 0022594542 scopus 로고
    • Multivariate statistical pattern recognition with nonreduced dimensionality
    • L. Grim, "Multivariate statistical pattern recognition with nonreduced dimensionality," Kybernetika, vol. 22, no. 2, pp. 142-157, 1986.
    • (1986) Kybernetika , vol.22 , Issue.2 , pp. 142-157
    • Grim, L.1
  • 13
    • 4344602134 scopus 로고    scopus 로고
    • Simultaneous feature selection and clustering using mixture models
    • Se
    • M. H. C. Law, M. A. T. Figueiredo, and A. K. Jain, "Simultaneous feature selection and clustering using mixture models," IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 9, pp. 1154-1166, Sep. 2004.
    • (2004) IEEE Trans. Pattern Anal. Mach. Intell. , vol.26 , Issue.9 , pp. 1154-1166
    • Law, M.H.C.1    Figueiredo, M.A.T.2    Jain, A.K.3
  • 14
    • 34948836126 scopus 로고    scopus 로고
    • A novel context-sensitive SVM for classification of remote sensing images
    • DOI 10.1109/IGARSS.2006.646, 4241794, 2006 IEEE International Geoscience and Remote Sensing Symposium, IGARSS
    • F. Bovolo, L. Bruzzone, and M. Marconcini "A novel context-sensitive SVM for classification of remote sensing images," in Proc. Int. Geosci. Remote Sens. Symp., Denver, CO, Aug. 2006, pp. 2498-2501. (Pubitemid 47516069)
    • (2006) International Geoscience and Remote Sensing Symposium (IGARSS) , pp. 2498-2501
    • Bovolo, F.1    Bruzzone, L.2    Marconcini, M.3
  • 15
    • 15944409957 scopus 로고    scopus 로고
    • Classification of remote sensing images from urban areas using a fuzzy model
    • 2004 IEEE International Geoscience and Remote Sensing Symposium Proceedings: Science for Society: Exploring and Managing a Changing Planet. IGARSS 2004
    • J. Chanussot, J. A. Benediktsson, and M. Vincent "Classification of remote sensing images from urban areas using a fuzzy model," in Proc. Int. Geosci. Remote Sens. Symp., vol. 1. Anchorage, AK, Sep. 2004, pp. 556-559. (Pubitemid 40438571)
    • (2004) International Geoscience and Remote Sensing Symposium (IGARSS) , vol.1 , pp. 556-559
    • Chanussot, J.1    Benediktsson, J.A.2    Vincent, M.3
  • 17
    • 0000573898 scopus 로고
    • The interpretation and simulation of clutter textures in coherent images
    • C. J. Oliver, "The interpretation and simulation of clutter textures in coherent images," Inverse Probl., vol. 2, no. 4, pp. 481-518, 1986.
    • (1986) Inverse Probl. , vol.2 , Issue.4 , pp. 481-518
    • Oliver, C.J.1
  • 18
    • 78649752714 scopus 로고    scopus 로고
    • Classification of very high resolution SAR images of urban areas by dictionary-based mixture models, copulas and Markov random fields using textural features
    • Sep.
    • A. Voisin, G. Moser, V. A. Krylov, S. B. Serpico, and J. Zerubia, "Classification of very high resolution SAR images of urban areas by dictionary-based mixture models, copulas and Markov random fields using textural features," in Proc. SPIE, Remote Sensing, vol. 7830, p. 78300O, Sep. 2010.
    • (2010) Proc. SPIE, Remote Sensing , vol.7830
    • Voisin, A.1    Moser, G.2    Krylov, V.A.3    Serpico, S.B.4    Zerubia, J.5
  • 20
    • 2642570063 scopus 로고    scopus 로고
    • Automatic variogram parameter extraction for textural classification of the panchromatic IKONOS imagery
    • May
    • Q. Chen and P. Gong, "Automatic variogram parameter extraction for textural classification of the panchromatic IKONOS imagery," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 5, pp. 1106-1115, May 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.5 , pp. 1106-1115
    • Chen, Q.1    Gong, P.2
  • 21
    • 0019229225 scopus 로고
    • Use of markov random fields as models of texture
    • M. Hassner and J. Sklansky, "The use of Markov random field as models of texture," Comput. Graph. Image Process., vol. 12, no. 4, pp. 357-370, 1980. (Pubitemid 11437084)
    • (1980) Computer graphics and image processing , vol.12 , Issue.4 , pp. 357-370
    • Hassner Martin1    Sklansky Jack2
  • 24
    • 0033345785 scopus 로고    scopus 로고
    • Texture analysis through Markov random fields: Urban area extraction
    • A. Lorette, X. Descombes, and J. Zerubia "Texture analysis through Markov random fields: Urban area extraction," in Proc. Int. Conf. Image Process., 1999, pp. 430-433.
    • (1999) Proc. Int. Conf. Image Process. , pp. 430-433
    • Lorette, A.1    Descombes, X.2    Zerubia, J.3
  • 26
    • 3843116557 scopus 로고    scopus 로고
    • Texture feature analysis using a Gauss-Markov model in hyperspectral image classification
    • Jul
    • G. Rellier, X. Descombes, F. Falzon, and J. Zerubia, "Texture feature analysis using a Gauss-Markov model in hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 7, pp. 1543-1551, Jul. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.7 , pp. 1543-1551
    • Rellier, G.1    Descombes, X.2    Falzon, F.3    Zerubia, J.4
  • 27
    • 0036475031 scopus 로고    scopus 로고
    • Double Markov random fields and Bayesian image segmentation
    • DOI 10.1109/78.978390, PII S1053587X02005603
    • D. E. Melas and S. P. Wilson, "Double Markov random fields and Bayesian image segmentation," IEEE Trans. Signal Process., vol. 50, no. 2, pp. 357-365, Feb. 2002. (Pubitemid 34291516)
    • (2002) IEEE Transactions on Signal Processing , vol.50 , Issue.2 , pp. 357-365
    • Melas, D.E.1    Wilson, S.P.2
  • 30
    • 52649142740 scopus 로고    scopus 로고
    • Variational Bayesian image restoration based on a product of t-distributions image priors
    • Oct.
    • G. Chantas, N. Galatsanos, A. Likas, and M. Saunders, "Variational Bayesian image restoration based on a product of t-distributions image priors," IEEE Trans. Image Process., vol. 17, no. 10, pp. 1795-1805, Oct. 2008.
    • (2008) IEEE Trans. Image Process. , vol.17 , Issue.10 , pp. 1795-1805
    • Chantas, G.1    Galatsanos, N.2    Likas, A.3    Saunders, M.4
  • 31
    • 77955807413 scopus 로고    scopus 로고
    • Adaptive Langevin sampler for separation of t-distribution modelled astrophysical maps
    • Se
    • K. Kayabol, E. E. Kuruoglu, J. L. Sanz, B. Sankur, E. Salerno, and D. Herranz, "Adaptive Langevin sampler for separation of t-distribution modelled astrophysical maps," IEEE Trans. Image Process., vol. 19, no. 9, pp. 2357-2368, Sep. 2010.
    • (2010) IEEE Trans. Image Process. , vol.19 , Issue.9 , pp. 2357-2368
    • Kayabol, K.1    Kuruoglu, E.E.2    Sanz, J.L.3    Sankur, B.4    Salerno, E.5    Herranz, D.6
  • 32
    • 48149085386 scopus 로고    scopus 로고
    • Robust image segmentation with mixtures of student's t-distributions
    • G. Sfikas, C. Nikou, and N. Galatsanos "Robust image segmentation with mixtures of student's t-distributions," in Proc. Int. Conf. Image Process., 2007, pp. 273-276.
    • (2007) Proc. Int. Conf. Image Process. , pp. 273-276
    • Sfikas, G.1    Nikou, C.2    Galatsanos, N.3
  • 33
    • 0021518209 scopus 로고
    • Stochastic relaxation, gibbs distributions, and the bayesian restoration of images
    • S. Geman and D. Geman, "Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images," IEEE Trans. Pattern Anal. Mach. Intell., vol. 6, no. 6, pp. 721-741, Nov. 1984. (Pubitemid 15453722)
    • (1984) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.PAMI-6 , Issue.6 , pp. 721-741
    • Geman Stuart1    Geman Donald2
  • 34
    • 33745627892 scopus 로고
    • Bayes smoothing algorithms for segmentation of images modeled by Markov random fields
    • Mar.
    • H. Derin, H. Elliott, R. Cristi, and D. Geman, "Bayes smoothing algorithms for segmentation of images modeled by Markov random fields," in Proc. Int. Conf. Acoust. Speech Signal Process., vol. 9. Mar. 1984, pp. 682-685.
    • (1984) Proc. Int. Conf. Acoust. Speech Signal Process. , vol.9 , pp. 682-685
    • Derin, H.1    Elliott, H.2    Cristi, R.3    Geman, D.4
  • 35
    • 0023123263 scopus 로고
    • Modeling and segmentation of noisy and textured images using gibbs random fields
    • H. Derin and H. Elliott, "Modeling and segmentation of noisy and textured images using Gibbs random fields," IEEE Trans. Pattern Anal. Mach. Intell., vol. 9, no. 1, pp. 39-55, Jan. 1987. (Pubitemid 17534848)
    • (1987) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.PAMI-9 , Issue.1 , pp. 39-55
    • Derin, H.1    Elliott, H.2
  • 36
    • 0038387419 scopus 로고    scopus 로고
    • Unsupervised classification of radar images using hidden Markov chains and hidden Markov random fields
    • Mar
    • R. Fjortoft, Y. Delignon, W. Pieczynski, M. Sigelle, and F. Tupin, "Unsupervised classification of radar images using hidden Markov chains and hidden Markov random fields," IEEE Trans. Geosci. Remote Sens., vol. 41, no. 3, pp. 675-686, Mar. 2003.
    • (2003) IEEE Trans. Geosci. Remote Sens. , vol.41 , Issue.3 , pp. 675-686
    • Fjortoft, R.1    Delignon, Y.2    Pieczynski, W.3    Sigelle, M.4    Tupin, F.5
  • 37
    • 79957639950 scopus 로고    scopus 로고
    • Bayesian hyperspectral image segmentation with discriminative class learning
    • Jun
    • J. S. Borges, J. M. Bioucas-Dias, and A. R. S. Marcal, "Bayesian hyperspectral image segmentation with discriminative class learning," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 6, pp. 2151-2164, Jun. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.6 , pp. 2151-2164
    • Borges, J.S.1    Bioucas-Dias, J.M.2    Marcal, A.R.S.3
  • 38
    • 0034545837 scopus 로고    scopus 로고
    • Unsupervised segmentation of multi-polarization SAR images based on amplitude and texture characteristics
    • L. Du and M. R. Grunes, "Unsupervised segmentation of multi-polarization SAR images based on amplitude and texture characteristic," in Proc. IEEE Geosci. Remote Sens. Symp., Jun. 2000, pp. 1122-1124. (Pubitemid 32019454)
    • (2000) International Geoscience and Remote Sensing Symposium (IGARSS) , vol.3 , pp. 1122-1124
    • Du Li-jen1    Grunes Mitchell, R.2
  • 40
    • 0032122746 scopus 로고    scopus 로고
    • Bayesian pixel classification using spatially variant finite mixtures and the generalized EM algorithm
    • PII S1057714998043681
    • S. Sanjay-Gopal, and T. J. Hebert, "Bayesian pixel classification using spatially variant finite mixtures and the generalized EM algorithm," IEEE Trans. Image Process., vol. 7, no. 7, pp. 1014-1028, Jul. 1998. (Pubitemid 128745415)
    • (1998) IEEE Transactions on Image Processing , vol.7 , Issue.7 , pp. 1014-1028
    • Sanjay-Gopal, S.1    Hebert, T.J.2
  • 41
    • 77949270268 scopus 로고    scopus 로고
    • Spatially varying mixtures incorporating line processes for image segmentation
    • G. Sfikas, C. Nikou, N. Galatsanos, and C. Heinrich, "Spatially varying mixtures incorporating line processes for image segmentation," J. Math. Imag. Vis., vol. 36, no. 2, pp. 91-110, 2010.
    • (2010) J. Math. Imag. Vis. , vol.36 , Issue.2 , pp. 91-110
    • Sfikas, G.1    Nikou, C.2    Galatsanos, N.3    Heinrich, C.4
  • 42
    • 38149013181 scopus 로고    scopus 로고
    • Edge-preserving Bayesian image superresolution based on compound Markov random fields
    • Porto, Portugal
    • A. Kanemura, S. Maeda, and S. Ishii "Edge-preserving Bayesian image superresolution based on compound Markov random fields," in Proc. Int. Conf. Artif. Neural Netw., Porto, Portugal, 2007, pp. 611-620.
    • (2007) Proc. Int. Conf. Artif. Neural Netw , pp. 611-620
    • Kanemura, A.1    Maeda, S.2    Ishii, S.3
  • 43
    • 0034745001 scopus 로고    scopus 로고
    • Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm
    • DOI 10.1109/42.906424, PII S027800620100800X
    • Y. Zhang, M. Brady, and S. Smith, "Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm," IEEE Trans. Med. Imag., vol. 20, no. 1, pp. 45-57, Jan. 2001. (Pubitemid 32293419)
    • (2001) IEEE Transactions on Medical Imaging , vol.20 , Issue.1 , pp. 45-57
    • Zhang, Y.1    Brady, M.2    Smith, S.3
  • 44
    • 77955802906 scopus 로고    scopus 로고
    • A Bayesian framework for image segmentation with spatially varying mixtures
    • Se
    • C. Nikou, A. C. Likas, and N. P. Galatsanos, "A Bayesian framework for image segmentation with spatially varying mixtures," IEEE Trans. Image Process., vol. 19, no. 9, pp. 2278-2289, Sep. 2010.
    • (2010) IEEE Trans. Image Process. , vol.19 , Issue.9 , pp. 2278-2289
    • Nikou, C.1    Likas, A.C.2    Galatsanos, N.P.3
  • 45
    • 34248678480 scopus 로고    scopus 로고
    • A spatially constrained generative model and an EM algorithm for image segmentation
    • DOI 10.1109/TNN.2007.891190
    • A. Diplaros, N. A. Vlassis, and T. Gevers, "A spatially constrained generative model and an EM algorithm for image segmentation," IEEE Trans. Neural Netw., vol. 18, no. 3, pp. 798-808, May 2007. (Pubitemid 46773744)
    • (2007) IEEE Transactions on Neural Networks , vol.18 , Issue.3 , pp. 798-808
    • Diplaros, A.1    Vlassis, N.2    Gevers, T.3
  • 46
    • 84980182359 scopus 로고
    • "über die statistik verketter vorgänge
    • F. Eggenberger and G. Polya, "Über die statistik verketter vorgänge," Z. Angew. Math. Mech., vol. 3, no. 4, pp. 279-289, 1923.
    • (1923) Z. Angew. Math. Mech. , vol.3 , Issue.4 , pp. 279-289
    • Eggenberger, F.1    Polya, G.2
  • 48
    • 0000065707 scopus 로고    scopus 로고
    • Image segmentation and labeling using the Polya urn model
    • Se
    • A. Banerjee, P. Burlina, and F. Alajaji, "Image segmentation and labeling using the Polya urn model," IEEE Trans. Image Process., vol. 8, no. 9, pp. 1243-1253, Sep. 1999.
    • (1999) IEEE Trans. Image Process. , vol.8 , Issue.9 , pp. 1243-1253
    • Banerjee, A.1    Burlina, P.2    Alajaji, F.3
  • 50
    • 33750372414 scopus 로고    scopus 로고
    • Unsupervised variational image segmentation/classification using a weibull observation model
    • DOI 10.1109/TIP.2006.881961
    • I. B. Ayed, N. Hennane, and A. Mitiche, "Unsupervised variational image segmentation/classification using a Weibull observation model," IEEE Trans. Image Process., vol. 15, no. 11, pp. 3431-3439, Nov. 2006. (Pubitemid 44615138)
    • (2006) IEEE Transactions on Image Processing , vol.15 , Issue.11 , pp. 3431-3439
    • Ben Ayed, I.1    Hennane, N.2    Mitiche, A.3
  • 52
    • 84990602490 scopus 로고
    • Optimal approximations by piecewise smooth functions and associated variational problems
    • D. Mumford and J. Shah, "Optimal approximations by piecewise smooth functions and associated variational problems," Commun. Pure Appl. Math., vol. 42, no. 4, pp. 577-685, 1989.
    • (1989) Commun. Pure Appl. Math. , vol.42 , Issue.4 , pp. 577-685
    • Mumford, D.1    Shah, J.2
  • 53
    • 0036891794 scopus 로고    scopus 로고
    • A multiphase level set framework for image segmentation using the Mumford and Shah model
    • DOI 10.1023/A:1020874308076
    • L. Vese and T. Chan, "A multiphase level set framework for image segmentation using the Mumford and Shah model," Int. J. Comput. Vis., vol. 50, no. 3, pp. 271-293, 2002. (Pubitemid 35377416)
    • (2002) International Journal of Computer Vision , vol.50 , Issue.3 , pp. 271-293
    • Vese, L.A.1    Chan, T.F.2
  • 54
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the em algorithm
    • A. P. Dempster, N. M. Laird, and D. B. Rubin, "Maximum likelihood from incomplete data via the EM algorithm," J. Royal Stat. Soc. B, vol. 39, no. 1, pp. 1-22, 1977.
    • (1977) J. Royal Stat. Soc. B , vol.39 , Issue.1 , pp. 1-22
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 55
    • 0021404166 scopus 로고
    • Mixture densities, maximum likelihood and the em algorithm
    • R. A. Redner and H. F. Walker, "Mixture densities, maximum likelihood and the EM algorithm," SIAM Rev., vol. 26, no. 2 pp. 195-239, 1984.
    • (1984) SIAM Rev. , vol.26 , Issue.2 , pp. 195-239
    • Redner, R.A.1    Walker, H.F.2
  • 57
    • 0001626339 scopus 로고
    • A classification em algorithm for clustering and two stochastic versions
    • G. Celeux and G. Govaert, "A classification EM algorithm for clustering and two stochastic versions," Comput. Stat. Data Anal., vol. 14, no. 3, pp. 315-332, 1992.
    • (1992) Comput. Stat. Data Anal. , vol.14 , Issue.3 , pp. 315-332
    • Celeux, G.1    Govaert, G.2
  • 58
    • 0035998835 scopus 로고    scopus 로고
    • Model-based clustering, discriminant analysis, and density estimation
    • C. Fraley and A. Raftery, "Model-based clustering, discriminant analysis, and density estimation," J. Amer. Stat. Assoc., vol. 97, no. 458, pp. 611-631, 2002.
    • (2002) J. Amer. Stat. Assoc. , vol.97 , Issue.458 , pp. 611-631
    • Fraley, C.1    Raftery, A.2
  • 59
    • 84944178665 scopus 로고
    • Hierarchical groupings to optimize an objective function
    • J. H. Ward, "Hierarchical groupings to optimize an objective function," J. Amer. Stat. Assoc., vol. 58, no. 301, pp. 236-244, 1963.
    • (1963) J. Amer. Stat. Assoc. , vol.58 , Issue.301 , pp. 236-244
    • Ward, J.H.1
  • 60
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • G. Schwarz, "Estimating the dimension of a model," Ann. Stat., vol. 6, no. 2, pp. 461-464, 1978.
    • (1978) Ann. Stat. , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 63
    • 0000107517 scopus 로고
    • An information measure for classification
    • C. S. Wallace and D. M. Boulton, "An information measure for classification," Comput. J., vol. 11, no. 2, pp. 185-194, 1968.
    • (1968) Comput. J. , vol.11 , Issue.2 , pp. 185-194
    • Wallace, C.S.1    Boulton, D.M.2
  • 64
    • 0000208682 scopus 로고
    • Estimation and inference by compact coding
    • C. S. Wallace and P. R. Freeman, "Estimation and inference by compact coding," J. Royal Stat. Soc. B, vol. 49, no. 3, pp. 240-265, 1987.
    • (1987) J. Royal Stat. Soc. B , vol.49 , Issue.3 , pp. 240-265
    • Wallace, C.S.1    Freeman, P.R.2
  • 65
    • 0000308948 scopus 로고    scopus 로고
    • Using the classification likelihood to choose the number of clusters
    • C. Biernacki and G. Govaert, "Using the classification likelihood to choose the number of clusters," Comput. Sci. Stat., vol. 29, no. 2, pp. 451-457, 1997.
    • (1997) Comput. Sci. Stat. , vol.29 , Issue.2 , pp. 451-457
    • Biernacki, C.1    Govaert, G.2
  • 66
    • 0034228914 scopus 로고    scopus 로고
    • Assessing a mixture model for clustering with the integrated completed likelihood
    • Jul
    • C. Biernacki, G. Celeux, and G. Govaert, "Assessing a mixture model for clustering with the integrated completed likelihood," IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 7, pp. 719-725, Jul. 2000.
    • (2000) IEEE Trans. Pattern Anal. Mach. Intell. , vol.22 , Issue.7 , pp. 719-725
    • Biernacki, C.1    Celeux, G.2    Govaert, G.3
  • 67
    • 0002864973 scopus 로고
    • ML estimation of the t distribution using em and its extensions, ECM and ECME
    • Mar.
    • C. Liu and D. B. Rubin, "ML estimation of the t distribution using EM and its extensions, ECM and ECME," Stat. Sinica, vol. 5, pp. 19-39, Mar. 1995.
    • (1995) Stat. Sinica , vol.5 , pp. 19-39
    • Liu, C.1    Rubin, D.B.2
  • 68
    • 0034420823 scopus 로고    scopus 로고
    • Nesting em algorithms for computational efficiency
    • Jan.
    • D. A. van Dyk, "Nesting EM algorithms for computational efficiency," Stat. Sinica, vol. 10, pp. 203-225, Jan. 2000.
    • (2000) Stat. Sinica , vol.10 , pp. 203-225
    • Van Dyk, D.A.1
  • 70
    • 68249096307 scopus 로고    scopus 로고
    • Hierarchical multiple Markov chain model for unsupervised texture segmentation
    • Aug
    • G. Scarpa, R. Gaetano, M. Haindl, and J. Zerubia, "Hierarchical multiple Markov chain model for unsupervised texture segmentation," IEEE Trans. Image Process., vol. 18, no. 8, pp. 1830-1843, Aug. 2009.
    • (2009) IEEE Trans. Image Process. , vol.18 , Issue.8 , pp. 1830-1843
    • Scarpa, G.1    Gaetano, R.2    Haindl, M.3    Zerubia, J.4
  • 71
    • 0025952277 scopus 로고
    • Divergence measures based on the Shannon entropy
    • Jan
    • J. Lin, "Divergence measures based on the Shannon entropy," IEEE Trans. Inf. Theory, vol. 37, no. 1, pp. 145-151, Jan. 1991.
    • (1991) IEEE Trans. Inf. Theory , vol.37 , Issue.1 , pp. 145-151
    • Lin, J.1
  • 74
    • 18144393690 scopus 로고    scopus 로고
    • Image segmentation as regularized clustering: A fully global curve evolution method
    • 2004 International Conference on Image Processing, ICIP 2004
    • C. Vazquez, A. Mitiche, and I. B. Ayed, "Image segmentation as regularized clustering: A fully global curve evolution method," in Proc. Int. Conf. Image Process., Singapore, Oct. 2004, pp. 3467-3470. (Pubitemid 40820821)
    • (2004) Proceedings - International Conference on Image Processing, ICIP , vol.2 , pp. 3467-3470
    • Vazquez, C.1    Mitiche, A.2    Ayed, I.B.3
  • 76
    • 84856256909 scopus 로고    scopus 로고
    • SAR image classification with non-stationary multinomial logistic mixture of amplitude and texture densities
    • Brussels, Belgium, Sep.
    • K. Kayabol, A. Voisin, and J. Zerubia "SAR image classification with non-stationary multinomial logistic mixture of amplitude and texture densities," in Proc. Int. Conf. Image Process., Brussels, Belgium, Sep. 2011, pp. 173-176.
    • (2011) Proc. Int. Conf. Image Process , pp. 173-176
    • Kayabol, K.1    Voisin, A.2    Zerubia, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.