메뉴 건너뛰기




Volumn 18, Issue 3, 2012, Pages 375-397

A cross-corpus study of subjectivity identification using unsupervised learning

Author keywords

[No Author keywords available]

Indexed keywords

CLASS DISTRIBUTIONS; DIFFERENT DOMAINS; EXPECTATION MAXIMIZATION; HIGH CONFIDENCE; IMPACTING FACTOR; ITERATIVE LEARNING; LEARNING METHODS; NAIVE BAYES CLASSIFIERS; POSTERIOR PROBABILITY; SELF-TRAINING; TRAINING SETS; UNSUPERVISED LEARNING METHOD;

EID: 84872019717     PISSN: 13513249     EISSN: 14698110     Source Type: Journal    
DOI: 10.1017/S1351324911000234     Document Type: Article
Times cited : (2)

References (36)
  • 1
    • 84859923482 scopus 로고    scopus 로고
    • When specialists and generalists work together: Overcoming domain dependence sentiment tagging
    • Columbus, Ohio
    • Andreevskaia, A., and Bergler, S. 2008. When specialists and generalists work together: overcoming domain dependence sentiment tagging. Proceedings of ACL/HLT, Columbus, Ohio.
    • (2008) Proceedings of ACL/HLT
    • Andreevskaia, A.1    Bergler, S.2
  • 3
    • 78649880690 scopus 로고    scopus 로고
    • Adapting a polarity lexicon using integer linear programming for domainspecific sentiment classification
    • Singapore
    • Choi, Y., and Cardie, C. 2009. Adapting a polarity lexicon using integer linear programming for domainspecific sentiment classification. Proceedings of EMNLP, Singapore.
    • (2009) Proceedings of EMNLP
    • Choi, Y.1    Cardie, C.2
  • 4
    • 36348931609 scopus 로고    scopus 로고
    • Transferring naive Bayes classifiers for text classification
    • Vancouver, British Columbia, Canada
    • Dai, W., Xue, G.-R., Yang, Q., and Yu, Y. 2007. Transferring naive Bayes classifiers for text classification. Proceedings of AAAI, Vancouver, British Columbia, Canada.
    • (2007) Proceedings of AAAI
    • Dai, W.1    Xue, G.-R.2    Yang, Q.3    Yu, Y.4
  • 5
    • 85048736608 scopus 로고    scopus 로고
    • Mine the easy, classify the hard: A semi-supervised approach to automatic sentiment classification
    • Suntec, Singapore
    • Dasgupta, S., and Ng, V. 2009. Mine the easy, classify the hard: a semi-supervised approach to automatic sentiment classification. Proceedings of ACL-IJCNLP, Suntec, Singapore.
    • (2009) Proceedings of ACL-IJCNLP
    • Dasgupta, S.1    Ng, V.2
  • 6
    • 36849045249 scopus 로고    scopus 로고
    • Semi-supervised classification with hybrid generative/discriminative methods
    • San Jose, CA, USA
    • Druck, G., Pal, C., McCallum, A., and Zhu, X. 2007. Semi-supervised classification with hybrid generative/discriminative methods. Proceedings of ACM SIGKDD, San Jose, CA, USA.
    • (2007) Proceedings of ACM SIGKDD
    • Druck, G.1    Pal, C.2    McCallum, A.3    Zhu, X.4
  • 8
    • 33750704930 scopus 로고    scopus 로고
    • Opinion extraction and summarization on the web
    • Boston, MA, USA
    • Hu, M., and Liu, B. 2006. Opinion extraction and summarization on the web. Proceedings of AAAI, Boston, MA, USA.
    • (2006) Proceedings of AAAI
    • Hu, M.1    Liu, B.2
  • 9
    • 38049057561 scopus 로고    scopus 로고
    • Automatic detection of opinion bearing words and sentences
    • Jeju Island, Korea
    • Kim, S.-M., and Hovy, E. 2005. Automatic detection of opinion bearing words and sentences. Proceedings of ACL, Jeju Island, Korea.
    • (2005) Proceedings of ACL
    • Kim, S.-M.1    Hovy, E.2
  • 10
    • 79958248245 scopus 로고    scopus 로고
    • Employing personal/impersonal views supervised and semi-supervised sentiment classification
    • Uppsala, Sweden
    • Li, S., Huang, C.-R., Zhou, G., and Lee, S. Y. M. 2010. Employing personal/impersonal views supervised and semi-supervised sentiment classification. Proceedings of ACL, Uppsala, Sweden.
    • (2010) Proceedings of ACL
    • Li, S.1    Huang, C.-R.2    Zhou, G.3    Lee, S.Y.M.4
  • 11
    • 70350645448 scopus 로고    scopus 로고
    • Sentiment analysis of blogs by combining lexical knowledge with text classification
    • Paris, France
    • Melville, P., Gryc, W., and Lawrence, R. D. 2009. Sentiment analysis of blogs by combining lexical knowledge with text classification. Proceedings of ACM SIGKDD, Paris, France.
    • (2009) Proceedings of ACM SIGKDD
    • Melville, P.1    Gryc, W.2    Lawrence, R.D.3
  • 12
    • 80053268189 scopus 로고    scopus 로고
    • Summarizing spoken and written conversations
    • Honolulu, Hawaii
    • Murray, G., and Carenini, G. 2008. Summarizing spoken and written conversations. Proceedings of EMNLP, Honolulu, Hawaii.
    • (2008) Proceedings of EMNLP
    • Murray, G.1    Carenini, G.2
  • 13
  • 14
    • 84858426560 scopus 로고    scopus 로고
    • Dependency tree-based sentiment classification using CRFs with hidden variables
    • Los Angeles, CA, USA
    • Nakagawa, T., Inui, K., and Kurohashi, S. 2010. Dependency tree-based sentiment classification using CRFs with hidden variables. Proceedings of NAACL, Los Angeles, CA, USA.
    • (2010) Proceedings of NAACL
    • Nakagawa, T.1    Inui, K.2    Kurohashi, S.3
  • 15
    • 85041441290 scopus 로고    scopus 로고
    • Examining the role of linguistic knowledge sources the automatic identification and classification of reviews
    • Sydney, Australia
    • Ng, V., Dasgupta, S., and Arifin, S. M. N. 2006. Examining the role of linguistic knowledge sources the automatic identification and classification of reviews.Proceedings of COLING/ACL, Sydney, Australia.
    • (2006) Proceedings of COLING/ACL
    • Ng, V.1    Dasgupta, S.2    Arifin, S.M.N.3
  • 16
    • 35348832406 scopus 로고    scopus 로고
    • Exploring the weblog space by detecting informative and affective articles
    • Banff, Alberta, Canada
    • Ni, X., Xue, G.-R., Ling, X., Yu, Y., and Yang, Q. 2007. Exploring the weblog space by detecting informative and affective articles.Proceedings of WWW, Banff, Alberta, Canada.
    • (2007) Proceedings of
    • Ni, X.1    Xue, G.-R.2    Ling, X.3    Yu, Y.4    Yang, Q.5
  • 17
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using EM
    • Nigam, K., McCallum, A. K., Thrun, S., and Mitchell, T. 2000. Text classification from labeled and unlabeled documents using EM. Machine Learning 39: 103-34. (Pubitemid 30594822)
    • (2000) Machine Learning , vol.39 , Issue.2 , pp. 103-134
    • Nigam, K.1    Mccallum, A.K.2    Thrun, S.3    Mitchell, T.4
  • 18
    • 84859969714 scopus 로고    scopus 로고
    • Optimizing informativeness and readability for sentiment summarization
    • Uppsala, Sweden
    • Nishikawa, H., Hasegawa, T., Matsuo, Y., and Kikui, G. 2010. Optimizing informativeness and readability for sentiment summarization. Proceedings of ACL, Uppsala, Sweden.
    • (2010) Proceedings of ACL
    • Nishikawa, H.1    Hasegawa, T.2    Matsuo, Y.3    Kikui, G.4
  • 19
    • 85141280473 scopus 로고    scopus 로고
    • A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts
    • Barcelona, Spain
    • Pang, B., and Lee, L. 2004. A sentimental education: sentiment analysis using subjectivity summarization based on minimum cuts. Proceedings of ACL, Barcelona, Spain.
    • (2004) Proceedings of ACL
    • Pang, B.1    Lee, L.2
  • 20
    • 80053425906 scopus 로고    scopus 로고
    • Using very simple statistics for review search: An exploration
    • Manchester, UK
    • Pang, B., and Lee, L. 2008. Using very simple statistics for review search: An exploration. Proceedings of COLING, Manchester, UK.
    • (2008) Proceedings of COLING
    • Pang, B.1    Lee, L.2
  • 21
    • 85141803251 scopus 로고    scopus 로고
    • Thumbs up? Sentiment classification using machine learning techniques
    • Philadelphia, PA, USA
    • Pang, B., Lee, L., and Vaithyanathan, S. 2002. Thumbs up? Sentiment classification using machine learning techniques. Proceedings of EMNLP, Philadelphia, PA, USA.
    • (2002) Proceedings of EMNLP
    • Pang, B.1    Lee, L.2    Vaithyanathan, S.3
  • 22
    • 84890681358 scopus 로고    scopus 로고
    • A shallow approach to subjectivity classification
    • Seattle, DC, USA
    • Raaijmakers, S., and Kraaij, W. 2008. A shallow approach to subjectivity classification. Proceedings of ICWSM, Seattle, DC, USA.
    • (2008) Proceedings of ICWSM
    • Raaijmakers, S.1    Kraaij, W.2
  • 23
    • 80053367371 scopus 로고    scopus 로고
    • Multimodal subjectivity analysis of multiparty conversation
    • Honolulu, Hawaii
    • Raaijmakers, S., Truong, K., and Wilson, T. 2008. Multimodal subjectivity analysis of multiparty conversation. Proceedings of EMNLP, Honolulu, Hawaii.
    • (2008) Proceedings of EMNLP
    • Raaijmakers, S.1    Truong, K.2    Wilson, T.3
  • 24
    • 85107820398 scopus 로고    scopus 로고
    • Learning extraction patterns for subjective expressions
    • Stroudsburg, PA, USA
    • Riloff, E., and Wiebe, J. 2003. Learning extraction patterns for subjective expressions. Proceedings of EMNLP, Stroudsburg, PA, USA.
    • (2003) Proceedings of EMNLP
    • Riloff, E.1    Wiebe, J.2
  • 25
    • 29344468054 scopus 로고    scopus 로고
    • Exploiting subjectivity classification to improve information extraction
    • Pittsburgh, PA, USA
    • Riloff, E., Wiebe, J., and Phillips, W. 2005. Exploiting subjectivity classification to improve information extraction. Proceedings of AAAI, Pittsburgh, PA, USA.
    • (2005) Proceedings of AAAI
    • Riloff, E.1    Wiebe, J.2    Phillips, W.3
  • 26
    • 84893427183 scopus 로고    scopus 로고
    • Determining term subjectivity and term orientation for opinion mining
    • Trento, Italy
    • Sebastiani, F., Esuli, A., and Sebastiani, F. 2006. Determining term subjectivity and term orientation for opinion mining. Proceedings of EACL, Trento, Italy.
    • (2006) Proceedings of EACL
    • Sebastiani, F.1    Esuli, A.2    Sebastiani, F.3
  • 27
    • 85099737893 scopus 로고    scopus 로고
    • Training a naive Bayes classifier via the em algorithm with a class distribution constraint
    • Edmonton, Canada
    • Tsuruoka, Y., and Tsujii, J. 2003. Training a naive Bayes classifier via the EM algorithm with a class distribution constraint. Proceedings of NAACL, Edmonton, Canada.
    • (2003) Proceedings of NAACL
    • Tsuruoka, Y.1    Tsujii, J.2
  • 28
    • 34547617264 scopus 로고    scopus 로고
    • Creating subjective and objective sentence classifiers from unannotated texts
    • Mexico City, Mexico
    • Wiebe, J., and Riloff, E. 2005. Creating subjective and objective sentence classifiers from unannotated texts. Proceedings of CICLing, Mexico City, Mexico.
    • (2005) Proceedings of CICLing
    • Wiebe, J.1    Riloff, E.2
  • 30
    • 84872042926 scopus 로고    scopus 로고
    • Bootstrapping supervised machine-learning polarity classifiers with rule-based classification
    • Lisbon, Portugal
    • Wiegand, M., and Klakow, D. 2010. Bootstrapping supervised machine-learning polarity classifiers with rule-based classification. Proceedings of WASSA, Lisbon, Portugal.
    • (2010) Proceedings of WASSA
    • Wiegand, M.1    Klakow, D.2
  • 31
    • 84859980841 scopus 로고    scopus 로고
    • Annotating subjective content meetings
    • Marrakech, Morocco
    • Wilson, T. 2008. Annotating subjective content meetings.Proceedings of LREC, Marrakech, Morocco.
    • (2008) Proceedings of LREC
    • Wilson, T.1
  • 32
    • 80054077950 scopus 로고    scopus 로고
    • Annotating opinions the world press
    • Sapporo, Japan
    • Wilson, T., and Wiebe, J. 2003. Annotating opinionsthe world press.Proceedings of SIGdial, Sapporo, Japan.
    • (2003) Proceedings of SIGdial
    • Wilson, T.1    Wiebe, J.2
  • 33
    • 9444224970 scopus 로고    scopus 로고
    • Just how mad are you? Finding strong and weak opinion clauses
    • San Jose, CA, USA
    • Wilson, T., Wiebe, J., and Hwa, R. 2004. Just how mad are you? Finding strong and weak opinion clauses.Proceedings of AAAI, San Jose, CA, USA.
    • (2004) Proceedings of AAAI
    • Wilson, T.1    Wiebe, J.2    Hwa, R.3
  • 34
    • 80053247760 scopus 로고    scopus 로고
    • Recognizing contextual polarity phrase-level sentiment analysis
    • Vancouver, British Columbia, Canada
    • Wilson, T., Wiebe, J., and Hoffmann, P. 2005. Recognizing contextual polarity phrase-level sentiment analysis.Proceedings of HLT-EMNLP, Vancouver, British Columbia, Canada.
    • (2005) Proceedings of HLT-EMNLP
    • Wilson, T.1    Wiebe, J.2    Hoffmann, P.3
  • 35
    • 85125365322 scopus 로고    scopus 로고
    • Towards answering opinion questions: Separating facts from opinions and identifying the polarity of opinion sentences
    • Stroudsburg, PA, USA
    • Yu, H., and Hatzivassiloglou, V. 2003. Towards answering opinion questions: separating facts from opinions and identifying the polarity of opinion sentences. Proceedings of EMNLP, Stroudsburg, PA, USA.
    • (2003) Proceedings of EMNLP
    • Yu, H.1    Hatzivassiloglou, V.2
  • 36
    • 80053416550 scopus 로고    scopus 로고
    • Active deep networks for semi-supervised sentiment classification
    • Beijing, China
    • Zhou, S., Chen, Q., and Wang, X. 2010. Active deep networks for semi-supervised sentiment classification. Proceedings of COLING, Beijing, China.
    • (2010) Proceedings of COLING
    • Zhou, S.1    Chen, Q.2    Wang, X.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.