메뉴 건너뛰기




Volumn 22, Issue 1, 2013, Pages 21-28

A support vector machine based MSM model for financial short-term volatility forecasting

Author keywords

Financial volatility forecasting; Markov switching multifractal; Support vector machine

Indexed keywords

FINANCE; FINANCIAL DATA PROCESSING; FORECASTING; FRACTALS; TIME SERIES;

EID: 84871965351     PISSN: 09410643     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00521-011-0742-z     Document Type: Article
Times cited : (28)

References (49)
  • 1
    • 0344547293 scopus 로고    scopus 로고
    • Forecasting volatility in financial markets: A review
    • Poon S, Granger C (2003) Forecasting volatility in financial markets: a review. J Econ Lit 41(2): 478-539.
    • (2003) Journal of Economic Literature , vol.41 , Issue.2 , pp. 478-539
    • Poon, S.1    Granger, C.2
  • 2
    • 0015969022 scopus 로고
    • Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier
    • Mandelbrot B (1974) Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier. J Fluid Mech 62(02): 331-358.
    • (1974) J Fluid Mech , vol.62 , Issue.2 , pp. 331-358
    • Mandelbrot, B.1
  • 4
    • 0003511004 scopus 로고    scopus 로고
    • Cowles Foundation discussion paper no. 1164, Yale University, paper available from the SSRN database at
    • Mandelbrot B, Fisher A, Calvet L (1997) The multifractal model of asset returns. Cowles Foundation discussion paper no. 1164, Yale University, paper available from the SSRN database at http://www. ssrn. com.
    • (1997) The multifractal model of asset returns
    • Mandelbrot, B.1    Fisher, A.2    Calvet, L.3
  • 5
    • 0036022601 scopus 로고    scopus 로고
    • Multifractality in asset returns: theory and evidence
    • Calvet L, Fisher A (2002) Multifractality in asset returns: theory and evidence. Rev Econ Stat 84(3): 381-406.
    • (2002) Rev Econ Stat , vol.84 , Issue.3 , pp. 381-406
    • Calvet, L.1    Fisher, A.2
  • 6
  • 7
    • 29144479773 scopus 로고    scopus 로고
    • How to forecast long-run volatility: regime switching and the estimation of multifractal processes
    • Calvet L, Fisher A (2004) How to forecast long-run volatility: regime switching and the estimation of multifractal processes. J Finan Econom 2(1): 49.
    • (2004) Journal of Financial Econometrics , vol.2 , Issue.1 , pp. 49
    • Calvet, L.1    Fisher, A.2
  • 9
    • 34247578666 scopus 로고    scopus 로고
    • Forecasting volatility and volume in the Tokyo stock market: Long memory, fractality and regime switching
    • Lux T, Kaizoji T (2007) Forecasting volatility and volume in the Tokyo stock market: Long memory, fractality and regime switching. J Econ Dyn Control 31(6): 1808-1843.
    • (2007) Journal of Economic Dynamics and Control , vol.31 , Issue.6 , pp. 1808-1843
    • Lux, T.1    Kaizoji, T.2
  • 10
    • 84871959070 scopus 로고    scopus 로고
    • Long-term vs. short-term comovements in stock markets: the use of Markov-switching multifractal models
    • Idier J (2010) Long-term vs. short-term comovements in stock markets: the use of Markov-switching multifractal models. Eur J Finance 99999(1): 1-22.
    • (2010) The European Journal of Finance , Issue.1 , pp. 1-22
    • Idier, J.1
  • 12
    • 0036825901 scopus 로고    scopus 로고
    • Modified support vector machines in financial time series forecasting
    • Tay F, Cao L (2002) Modified support vector machines in financial time series forecasting. Neurocomputing 48(1-4): 847-861.
    • (2002) Neurocomputing , vol.48 , Issue.1-4 , pp. 847-861
    • Tay, F.1    Cao, L.2
  • 13
    • 0242351905 scopus 로고    scopus 로고
    • Financial time series forecasting using support vector machines
    • Kim K (2003) Financial time series forecasting using support vector machines. Neurocomputing 55(1-2): 307-319.
    • (2003) Neurocomputing , vol.55 , Issue.1-2 , pp. 307-319
    • Kim, K.1
  • 14
    • 0742268991 scopus 로고    scopus 로고
    • Support vector machine with adaptive parameters in financial time series forecasting
    • Cao L, Tay F (2004) Support vector machine with adaptive parameters in financial time series forecasting. Neural Netw IEEE Trans 14(6): 1506-1518.
    • (2004) Neural Networks, IEEE Transactions on , vol.14 , Issue.6 , pp. 1506-1518
    • Cao, L.1    Tay, F.2
  • 15
    • 84945797974 scopus 로고
    • What is the best method of forecasting?
    • Chatfield C (1988) What is the best method of forecasting? J Appl Stat 15(1): 19-38.
    • (1988) Journal of Applied Statistics , vol.15 , Issue.1 , pp. 19-38
    • Chatfield, C.1
  • 16
    • 0000589531 scopus 로고
    • Why combining works?
    • Makridakis S (1989) Why combining works? Int J Forecast 5(4): 601-603.
    • (1989) Int J Forecast , vol.5 , Issue.4 , pp. 601-603
    • Makridakis, S.1
  • 18
    • 0037243071 scopus 로고    scopus 로고
    • Time series forecasting using a hybrid ARIMA and neural network model
    • Zhang G (2003) Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50: 159-175.
    • (2003) Neurocomputing , vol.50 , pp. 159-175
    • Zhang, G.1
  • 19
    • 84986792205 scopus 로고
    • An introduction to long-memory time series models and fractional differencing
    • Granger C, Joyeux R (1980) An introduction to long-memory time series models and fractional differencing. J Time Ser Anal 1(1): 15-29.
    • (1980) Journal of Time Series Analysis , vol.1 , Issue.1 , pp. 15-29
    • Granger, C.1    Joyeux, R.2
  • 20
    • 0030117828 scopus 로고    scopus 로고
    • An evaluation of volatility forecasting techniques
    • Brailsford T, Faff R (1996) An evaluation of volatility forecasting techniques. J Bank Finance 20(3): 419-438.
    • (1996) Journal of Banking & Finance , vol.20 , Issue.3 , pp. 419-438
    • Brailsford, T.1    Faff, R.2
  • 21
    • 84871989246 scopus 로고    scopus 로고
    • MF
    • MF (2010) Empirical evidence for multifractals in finance. Available at http://www. multifractal-finance. com/resources/35-articles/61-empirical-evidence-for-multifractals-in-finance.
    • (2010) Empirical evidence for multifractals in finance
  • 24
    • 0011913398 scopus 로고    scopus 로고
    • Clustering of volatility as a multiscale phenomenon
    • Pasquini M, Serva M (2000) Clustering of volatility as a multiscale phenomenon. Eur Phys J B 16(1): 195-201.
    • (2000) The European Physical Journal B , vol.16 , Issue.1 , pp. 195-201
    • Pasquini, M.1    Serva, M.2
  • 28
    • 84871963397 scopus 로고    scopus 로고
    • Theory of Financial Risk and Derivative Pricing: From Statistical Physics to Risk Management
    • Breymann W (2006) Theory of financial risk and derivative pricing: from statistical physics to risk management. J Am Stat Assoc 101(474): 850-852.
    • (2006) J Am Stat Assoc , vol.101 , Issue.474 , pp. 850-852
    • Breymann, W.1
  • 29
    • 41649118014 scopus 로고    scopus 로고
    • The Markov-Switching Multifractal Model of Asset Returns
    • Lux T (2008) The Markov-switching multifractal model of asset returns. J Bus Econ Stat 26(2): 194-210.
    • (2008) Journal of Business and Economic Statistics , vol.26 , Issue.2 , pp. 194-210
    • Lux, T.1
  • 31
    • 84979340104 scopus 로고
    • To combine or not to combine? Issues of combining forecasts
    • Palm F, Zellner A (1992) To combine or not to combine? Issues of combining forecasts. J Forecast 11(8): 687-701.
    • (1992) Journal of Forecasting , vol.11 , Issue.8 , pp. 687-701
    • Palm, F.1    Zellner, A.2
  • 32
    • 0030110883 scopus 로고    scopus 로고
    • Time series forecasting by combining RBF networks, certainty factors, and the Box-Jenkins model
    • Wedding DK, Cios KJ (1996) Time series forecasting by combining RBF networks, certainty factors, and the Box-Jenkins model. Neurocomputing 10(2): 149-168.
    • (1996) Neurocomputing , vol.10 , Issue.2 , pp. 149-168
    • Wedding, D.K.1    Cios, K.J.2
  • 33
    • 0036074753 scopus 로고    scopus 로고
    • Combined forecasts from linear and nonlinear time series models
    • Terui N, van Dijk H (2002) Combined forecasts from linear and nonlinear time series models. Int J Forecast 18(3): 421-438.
    • (2002) Int J Forecast , vol.18 , Issue.3 , pp. 421-438
    • Terui, N.1    van Dijk, H.2
  • 35
    • 0010063925 scopus 로고    scopus 로고
    • An artificial neural network-GARCH model for international stock return volatility
    • Donaldson R, Kamstra M (1997) An artificial neural network-GARCH model for international stock return volatility. J Emp Finance 4(1): 17-46.
    • (1997) Journal of Empirical Finance , vol.4 , Issue.1 , pp. 17-46
    • Donaldson, R.1    Kamstra, M.2
  • 36
    • 60249089841 scopus 로고    scopus 로고
    • Improving forecasts of GARCH family models with the artificial neural networks: An application to the daily returns in Istanbul Stock Exchange
    • Bildirici M (2009) Improving forecasts of GARCH family models with the artificial neural networks: an application to the daily returns in Istanbul Stock Exchange. Exp Syst Appl 36(4): 7355-7362.
    • (2009) Expert Systems with Applications , vol.36 , Issue.4 , pp. 7355-7362
    • Bildirici, M.1
  • 37
    • 58149468814 scopus 로고    scopus 로고
    • Improvement of auto-regressive integrated moving average models using fuzzy logic and artificial neural networks (ANNs)
    • Khashei M, Bijari M, Raissi Ardali G (2009) Improvement of auto-regressive integrated moving average models using fuzzy logic and artificial neural networks (ANNs). Neurocomputing 72(4-6): 956-967.
    • (2009) Neurocomputing , vol.72 , Issue.4-6 , pp. 956-967
    • Khashei, M.1    Bijari, M.2    Raissi Ardali, G.3
  • 38
    • 64949130686 scopus 로고    scopus 로고
    • Financial time series forecasting using independent component analysis and support vector regression
    • Lu C, Lee T, Chiu C (2009) Financial time series forecasting using independent component analysis and support vector regression. Decis Supp Syst 47(2): 115-125.
    • (2009) Decis Support Syst , vol.47 , Issue.2 , pp. 115-125
    • Lu, C.1    Lee, T.2    Chiu, C.3
  • 39
    • 0001023715 scopus 로고    scopus 로고
    • Application of support vector machines in financial time series forecasting
    • Tay F, Cao L (2001) Application of support vector machines in financial time series forecasting. Omega 29(4): 309-317.
    • (2001) Omega , vol.29 , Issue.4 , pp. 309-317
    • Tay, F.1    Cao, L.2
  • 41
    • 70350383629 scopus 로고    scopus 로고
    • GARCH prediction using spline wavelet support vector machine
    • Tang L, Sheng H, Tang L (2009) GARCH prediction using spline wavelet support vector machine. Neural Comput Appl 18(8): 913-917.
    • (2009) Neural Computing & Applications , vol.18 , Issue.8 , pp. 913-917
    • Tang, L.1    Sheng, H.2    Tang, L.3
  • 43
    • 77953931277 scopus 로고    scopus 로고
    • Forecasting volatility with support vector machine-based GARCH model
    • Chen S, Härdle WK, Jeong K (2010) Forecasting volatility with support vector machine-based GARCH model. J Forecast 29(4): 406-433.
    • (2010) Journal of Forecasting , vol.29 , Issue.4 , pp. 406-433
    • Chen, S.1    Härdle, W.K.2    Jeong, K.3
  • 45
    • 84887252594 scopus 로고    scopus 로고
    • Support vector method for function approximation, regression estimation, and signal processing
    • Vapnik V, Golowich S, Smola A (1996) Support vector method for function approximation, regression estimation, and signal processing. In: Advances in neural information processing systems 9, pp 281-287.
    • (1996) Advances in neural information processing systems , vol.9 , pp. 281-287
    • Vapnik, V.1    Golowich, S.2    Smola, A.3
  • 46
    • 44649089316 scopus 로고    scopus 로고
    • Multifractal analysis of Chinese stock volatilities based on the partition function approach
    • Jiang Z, Zhou W (2008) Multifractal analysis of Chinese stock volatilities based on the partition function approach. Phys A Stat Mech Appl 387(19-20): 4881-4888.
    • (2008) Physica A: Statistical Mechanics and Its Applications , vol.387 , Issue.19-20 , pp. 4881-4888
    • Jiang, Z.1    Zhou, W.2
  • 48
    • 0000650195 scopus 로고
    • The predictive ability of several models of exchange rate volatility
    • West K, Cho D (1995) The predictive ability of several models of exchange rate volatility. J Econom 69(2): 367-391.
    • (1995) Journal of Econometrics , vol.69 , Issue.2 , pp. 367-391
    • West, K.1    Cho, D.2
  • 49
    • 19644379708 scopus 로고    scopus 로고
    • A forecast comparison of volatility models: does anything beat a GARCH (1, 1)?
    • Hansen P, Lunde A (2005) A forecast comparison of volatility models: does anything beat a GARCH (1, 1)? J Appl Econom 20(7): 873-889.
    • (2005) Journal of Applied Econometrics , vol.20 , Issue.7 , pp. 873-889
    • Hansen, P.1    Lunde, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.