메뉴 건너뛰기




Volumn 29, Issue 4, 2010, Pages 406-433

Forecasting volatility with support vector machine-based GARCH model

Author keywords

(Recurrent) support vector machine; Diebold Mariano test; GARCH model; Volatility forecasting

Indexed keywords

FORECASTING; NEURAL NETWORKS; SENSITIVITY ANALYSIS;

EID: 77953931277     PISSN: 02776693     EISSN: 1099131X     Source Type: Journal    
DOI: 10.1002/for.1134     Document Type: Article
Times cited : (75)

References (116)
  • 1
    • 0001917976 scopus 로고
    • Conditional heteroskedasticity in time series models of stock returns: Evidence and forecasts
    • Akgiray V. 1989. Conditional heteroskedasticity in time series models of stock returns: evidence and forecasts. Journal of Business 62(1):55-80.
    • (1989) Journal of Business , vol.62 , Issue.1 , pp. 55-80
    • Akgiray, V.1
  • 2
    • 0005880209 scopus 로고    scopus 로고
    • Answering the skeptics: Yes, standard volatility models do provide accurate forecasts
    • Andersen T, Bollerslev T. 1998. Answering the skeptics: yes, standard volatility models do provide accurate forecasts. International Economic Review 39:885-905.
    • (1998) International Economic Review , vol.39 , pp. 885-905
    • Andersen, T.1    Bollerslev, T.2
  • 4
    • 0035583279 scopus 로고    scopus 로고
    • On the normal inverse gaussian stochastic volatility model
    • Andersson J. 2001. On the normal inverse gaussian stochastic volatility model. Journal of Business and Economic Statistics 19:44-54.
    • (2001) Journal of Business and Economic Statistics , vol.19 , pp. 44-54
    • Andersson, J.1
  • 5
    • 0001758906 scopus 로고
    • Heteroskedasticity and autocorrelation consistent covariance matrix estimation
    • Andrews D. 1991. Heteroskedasticity and autocorrelation consistent covariance matrix estimation. Econometrica 59:817-858.
    • (1991) Econometrica , vol.59 , pp. 817-858
    • Andrews, D.1
  • 7
    • 11944251556 scopus 로고    scopus 로고
    • Predicting the volatility of the S&P-500 stock index via GARCH models: The role of asymmetries
    • Awartani B, Corradi V. 2005. Predicting the volatility of the S&P-500 stock index via GARCH models: the role of asymmetries. International Journal of Forecasting 21(1):167-183.
    • (2005) International Journal of Forecasting , vol.21 , Issue.1 , pp. 167-183
    • Awartani, B.1    Corradi, V.2
  • 8
    • 1342290472 scopus 로고    scopus 로고
    • Comparative forecasting performance of symmetric and asymmetric conditional volatility models of an exchange rate
    • Balaban E. 2004. Comparative forecasting performance of symmetric and asymmetric conditional volatility models of an exchange rate. Economics Letters 83(1):99-105.
    • (2004) Economics Letters , vol.83 , Issue.1 , pp. 99-105
    • Balaban, E.1
  • 10
    • 34447624872 scopus 로고    scopus 로고
    • Does implied volatility provide any information beyond that captured in model-based volatility forecasts?
    • Becker R, Clements A, White S. 2007. Does implied volatility provide any information beyond that captured in model-based volatility forecasts? Journal of Banking and Finance 31(8):2535-2549.
    • (2007) Journal of Banking and Finance , vol.31 , Issue.8 , pp. 2535-2549
    • Becker, R.1    Clements, A.2    White, S.3
  • 11
  • 12
    • 49649086037 scopus 로고    scopus 로고
    • Direction-of-change forecasting using a volatility-based recurrent neural network
    • Bekiros S, Georgoutsos D. 2008. Direction-of-change forecasting using a volatility-based recurrent neural network. Journal of Forecasting 27(5):407-417.
    • (2008) Journal of Forecasting , vol.27 , Issue.5 , pp. 407-417
    • Bekiros, S.1    Georgoutsos, D.2
  • 14
    • 0012676386 scopus 로고    scopus 로고
    • Forecasting S&P 100 volatility: The incremental information content of implied volatilities and high-frequency index returns
    • Blair B, Poon S, H, Taylor S. 2001. Forecasting S&P 100 volatility: the incremental information content of implied volatilities and high-frequency index returns. Journal of Econometrics 105:5-26.
    • (2001) Journal of Econometrics , vol.105 , pp. 5-26
    • Blair, B.1    Poon, S.H.2    Taylor, S.3
  • 15
    • 42449156579 scopus 로고
    • Generalized autoregressive conditional heteroskedasticity
    • Bollerslev T. 1986. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31:307-327.
    • (1986) Journal of Econometrics , vol.31 , pp. 307-327
    • Bollerslev, T.1
  • 16
    • 34848900983 scopus 로고
    • Arch modeling in finance: A review of the theory and empirical evidence
    • Bollerslev T, Chou R, Kroner K. 1992. Arch modeling in finance: a review of the theory and empirical evidence. Journal of Econometrics 52:5-59.
    • (1992) Journal of Econometrics , vol.52 , pp. 5-59
    • Bollerslev, T.1    Chou, R.2    Kroner, K.3
  • 18
    • 0030117828 scopus 로고    scopus 로고
    • An evaluation of volatility forecasting techniques
    • Brailsford T, Faff R. 1996. An evaluation of volatility forecasting techniques. Journal of Banking and Finance 20:419-438.
    • (1996) Journal of Banking and Finance , vol.20 , pp. 419-438
    • Brailsford, T.1    Faff, R.2
  • 19
    • 0001903382 scopus 로고    scopus 로고
    • Predicting stock index volatility: Can market volume help?
    • Brooks C. 1998. Predicting stock index volatility: can market volume help? Journal of Forecasting 17:59-80.
    • (1998) Journal of Forecasting , vol.17 , pp. 59-80
    • Brooks, C.1
  • 20
    • 0035275684 scopus 로고    scopus 로고
    • A double-threshold GARCH model for the french franc/deutschmark exchange rate
    • Brooks C. 2001. A double-threshold GARCH model for the french franc/deutschmark exchange rate. Journal of Forecasting 20:135-143.
    • (2001) Journal of Forecasting , vol.20 , pp. 135-143
    • Brooks, C.1
  • 21
    • 0037272504 scopus 로고    scopus 로고
    • Volatility forecasting for risk management
    • Brooks C, Persand G. 2003. Volatility forecasting for risk management. Journal of Forecasting 22:1-22.
    • (2003) Journal of Forecasting , vol.22 , pp. 1-22
    • Brooks, C.1    Persand, G.2
  • 22
    • 84986414605 scopus 로고
    • Nonlinear time-series analysis of stock volatilities
    • Cao C, Tsay R. 1992. Nonlinear time-series analysis of stock volatilities. Journal of Applied Econometrics 1:165-185.
    • (1992) Journal of Applied Econometrics , vol.1 , pp. 165-185
    • Cao, C.1    Tsay, R.2
  • 23
    • 0035533512 scopus 로고    scopus 로고
    • Financial forecasting using support vector machines
    • Cao L, Tay F. 2001. Financial forecasting using support vector machines. Neural Computation and Application 10:184-192.
    • (2001) Neural Computation and Application , vol.10 , pp. 184-192
    • Cao, L.1    Tay, F.2
  • 24
    • 21844525728 scopus 로고
    • Market structure and the intraday pattern of bid-ask spreads for NASDAQ securities
    • Chan K, Christie W, Schultz P. 1995. Market structure and the intraday pattern of bid-ask spreads for NASDAQ securities. Journal of Business 68(1):35-40.
    • (1995) Journal of Business , vol.68 , Issue.1 , pp. 35-40
    • Chan, K.1    Christie, W.2    Schultz, P.3
  • 25
    • 38949212236 scopus 로고    scopus 로고
    • Detections of changes in return by a wavelet smoother with conditional heteroscedastic volatility
    • Chen G, Choi Y, Zhou Y. 2008. Detections of changes in return by a wavelet smoother with conditional heteroscedastic volatility. Journal of Econometrics 143(2):227-262.
    • (2008) Journal of Econometrics , vol.143 , Issue.2 , pp. 227-262
    • Chen, G.1    Choi, Y.2    Zhou, Y.3
  • 26
    • 77249150052 scopus 로고    scopus 로고
    • Modeling default risk with support vector machines
    • accepted for publication
    • Chen S, Härdle W, Moro R. 2009. Modeling default risk with support vector machines. Quantitative Finance (accepted for publication).
    • (2009) Quantitative Finance
    • Chen, S.1    Härdle, W.2    Moro, R.3
  • 27
    • 0011716069 scopus 로고    scopus 로고
    • Markov chain Monte Carlo methods for generalized stochastic volatility models
    • Chib S, Nardari F, Shephard N. 2002. Markov chain Monte Carlo methods for generalized stochastic volatility models. Journal of Econometrics 108:281-316.
    • (2002) Journal of Econometrics , vol.108 , pp. 281-316
    • Chib, S.1    Nardari, F.2    Shephard, N.3
  • 28
    • 0001578132 scopus 로고    scopus 로고
    • Performance of GARCH models in forecasting stock market volatility
    • Chong C, Ahmad M, Abdullah M. 1999. Performance of GARCH models in forecasting stock market volatility. Journal of Forecasting 18:333-343.
    • (1999) Journal of Forecasting , vol.18 , pp. 333-343
    • Chong, C.1    Ahmad, M.2    Abdullah, M.3
  • 29
    • 57049124270 scopus 로고    scopus 로고
    • Forecasting ability of GARCH vs kalman filter method: Evidence from daily UK timevarying beta
    • Choudhry T, Wu H. 2008. Forecasting ability of GARCH vs kalman filter method: evidence from daily UK timevarying beta. Journal of Forecasting 27(8):670-689.
    • (2008) Journal of Forecasting , vol.27 , Issue.8 , pp. 670-689
    • Choudhry, T.1    Wu, H.2
  • 30
    • 0033468778 scopus 로고    scopus 로고
    • A Monte Carlo study of the forecasting performance of empirical SETAR models
    • Clements M, Smith J. 1999. A Monte Carlo study of the forecasting performance of empirical SETAR models. Journal of Applied Econometrics 14:123-141.
    • (1999) Journal of Applied Econometrics , vol.14 , pp. 123-141
    • Clements, M.1    Smith, J.2
  • 32
    • 1842659927 scopus 로고    scopus 로고
    • Some recent developments in predictive accuracy testing with nested models and (generic) nonlinear alternatives
    • Corradi V, Swanson N. 2004. Some recent developments in predictive accuracy testing with nested models and (generic) nonlinear alternatives. International Journal of Forecasting 20(2):185-199.
    • (2004) International Journal of Forecasting , vol.20 , Issue.2 , pp. 185-199
    • Corradi, V.1    Swanson, N.2
  • 33
    • 67349157624 scopus 로고    scopus 로고
    • Predictive density estimators for daily volatility based on the use of realized measures
    • Corradi V, Distaso W, Swanson N. 2009. Predictive density estimators for daily volatility based on the use of realized measures. Journal of Econometrics 150(2):119-138.
    • (2009) Journal of Econometrics , vol.150 , Issue.2 , pp. 119-138
    • Corradi, V.1    Distaso, W.2    Swanson, N.3
  • 35
    • 0002733510 scopus 로고
    • Stock market volatility and the information content of stock index options
    • Day T, Lewis C. 1992. Stock market volatility and the information content of stock index options. Journal of Econometrics 52:267-287.
    • (1992) Journal of Econometrics , vol.52 , pp. 267-287
    • Day, T.1    Lewis, C.2
  • 38
    • 38249018907 scopus 로고
    • Volatility forecasting without data-snooping
    • Dimson E, Marsh P. 1990. Volatility forecasting without data-snooping. Journal of Banking and Finance 44:399-421.
    • (1990) Journal of Banking and Finance , vol.44 , pp. 399-421
    • Dimson, E.1    Marsh, P.2
  • 39
    • 0010063925 scopus 로고    scopus 로고
    • An artificial neural network-GARCH model for international stock return volatility
    • Donaldson R, Kamstra M. 1997. An artificial neural network-GARCH model for international stock return volatility. Journal of Empirical Finance 4:17-46.
    • (1997) Journal of Empirical Finance , vol.4 , pp. 17-46
    • Donaldson, R.1    Kamstra, M.2
  • 40
    • 35948964015 scopus 로고    scopus 로고
    • An empirical comparison of continuous-time models of implied volatility indices
    • Dotsis G, Psychoyios D, Skiadopoulos G. 2007. An empirical comparison of continuous-time models of implied volatility indices. Journal of Banking and Finance 31:3584-3603.
    • (2007) Journal of Banking and Finance , vol.31 , pp. 3584-3603
    • Dotsis, G.1    Psychoyios, D.2    Skiadopoulos, G.3
  • 41
    • 0036685113 scopus 로고    scopus 로고
    • Forecasting and trading currency volatility: An application of recurrent neural regression and model combination
    • Dunis C, Huang X. 2002. Forecasting and trading currency volatility: an application of recurrent neural regression and model combination. Journal of Forecasting 21:317-354.
    • (2002) Journal of Forecasting , vol.21 , pp. 317-354
    • Dunis, C.1    Huang, X.2
  • 43
    • 0000051984 scopus 로고
    • Autoregressive conditional heteroskedasticity with estimates of the variance of UK inflation
    • Engle R. 1982. Autoregressive conditional heteroskedasticity with estimates of the variance of UK inflation. Econometrica 50:957-1008.
    • (1982) Econometrica , vol.50 , pp. 957-1008
    • Engle, R.1
  • 45
    • 47349086716 scopus 로고    scopus 로고
    • Modelling of scale change, periodicity and conditional heteroskedasticity in return volatility
    • Feng Y, McNeil A. 2008. Modelling of scale change, periodicity and conditional heteroskedasticity in return volatility. Economic Modelling 25(5):850-867.
    • (2008) Economic Modelling , vol.25 , Issue.5 , pp. 850-867
    • Feng, Y.1    McNeil, A.2
  • 46
    • 33745113478 scopus 로고    scopus 로고
    • Dynamics of realized volatilities and correlations: An empirical study
    • Ferland R, Lalancette S. 2006. Dynamics of realized volatilities and correlations: an empirical study. Journal of Banking and Finance 30(7):2109-2130.
    • (2006) Journal of Banking and Finance , vol.30 , Issue.7 , pp. 2109-2130
    • Ferland, R.1    Lalancette, S.2
  • 47
    • 0042279716 scopus 로고    scopus 로고
    • On the profitability of technical trading rules based on artificial neural networks: Evidence from the Madrid stock market
    • Fernandez-Rodriguez F, Gonzalez-Martel C, Sosvilla-Rivero S. 2000. On the profitability of technical trading rules based on artificial neural networks: evidence from the Madrid stock market. Economics Letters 69(1):89-94.
    • (2000) Economics Letters , vol.69 , Issue.1 , pp. 89-94
    • Fernandez-Rodriguez, F.1    Gonzalez-Martel, C.2    Sosvilla-Rivero, S.3
  • 49
    • 0000642051 scopus 로고    scopus 로고
    • The quality of market volatility forecasts implied by S&P 100 index option prices
    • Fleming J. 1998. The quality of market volatility forecasts implied by S&P 100 index option prices. Journal of Empirical Finance 5:317-345.
    • (1998) Journal of Empirical Finance , vol.5 , pp. 317-345
    • Fleming, J.1
  • 50
    • 0347985229 scopus 로고    scopus 로고
    • Bootstrapping nonparametric estimators of the volatility function
    • Franke J, Neumann M, Stockis J. 2004. Bootstrapping nonparametric estimators of the volatility function. Journal of Econometrics 118:189-218.
    • (2004) Journal of Econometrics , vol.118 , pp. 189-218
    • Franke, J.1    Neumann, M.2    Stockis, J.3
  • 51
    • 0000557541 scopus 로고    scopus 로고
    • Forecasting stock market volatility using (non-linear) GARCH models
    • Franses P, Dijk DV. 1996. Forecasting stock market volatility using (non-linear) GARCH models. Journal of Forecasting 15(3):229-235.
    • (1996) Journal of Forecasting , vol.15 , Issue.3 , pp. 229-235
    • Franses, P.1    Dijk, D.V.2
  • 55
    • 31744446464 scopus 로고    scopus 로고
    • MCMC methods for comparing stochastic volatility and GARCH models
    • Gerlach R, Tuyl F. 2006. MCMC methods for comparing stochastic volatility and GARCH models. International Journal of Forecasting 22(1):91-107.
    • (2006) International Journal of Forecasting , vol.22 , Issue.1 , pp. 91-107
    • Gerlach, R.1    Tuyl, F.2
  • 56
    • 67649497847 scopus 로고    scopus 로고
    • Handbook of Statistics: Statistical Methods in Finance
    • Ghysels E, Harvey A, Rebault E. 1996. Handbook of Statistics: Statistical Methods in Finance, Vol. 14. Elsevier Science: Amsterdam; 119-191.
    • (1996) Elsevier Science: Amsterdam , vol.14 , pp. 119-191
    • Ghysels, E.1    Harvey, A.2    Rebault, E.3
  • 57
    • 33644519378 scopus 로고    scopus 로고
    • Predicting volatility: How to get most out of returns data sampled at different frequencies
    • Ghysels E, Santa-Clara P, Valkanov R. 2006. Predicting volatility: how to get most out of returns data sampled at different frequencies. Journal of Econometrics 131:59-95.
    • (2006) Journal of Econometrics , vol.131 , pp. 59-95
    • Ghysels, E.1    Santa-Clara, P.2    Valkanov, R.3
  • 58
    • 84993601065 scopus 로고
    • On the relation between the expected value and the volatility of nominal excess return on stocks
    • Glosten L, Jagannathan R, Runkle D. 1992. On the relation between the expected value and the volatility of nominal excess return on stocks. Journal of Finance 46:1779-1801.
    • (1992) Journal of Finance , vol.46 , pp. 1779-1801
    • Glosten, L.1    Jagannathan, R.2    Runkle, D.3
  • 59
    • 0038785218 scopus 로고    scopus 로고
    • Forecasting volatility of emerging stock markets: Linear versus non-linear GARCH models
    • Gokcan S. 2000. Forecasting volatility of emerging stock markets: linear versus non-linear GARCH models. Journal of Forecasting 19(6):499-504.
    • (2000) Journal of Forecasting , vol.19 , Issue.6 , pp. 499-504
    • Gokcan, S.1
  • 61
    • 0030242133 scopus 로고    scopus 로고
    • Modeling the conditional distribution of interest rates as a regime-switching process
    • Gray S. 1996. Modeling the conditional distribution of interest rates as a regime-switching process. Journal of Financial Economics 42:27-62.
    • (1996) Journal of Financial Economics , vol.42 , pp. 27-62
    • Gray, S.1
  • 62
    • 59249109628 scopus 로고    scopus 로고
    • A real time evaluation of bank of England forecasts of inflation and growth
    • Groen J, Kapetanios G, Price S. 2009. A real time evaluation of bank of England forecasts of inflation and growth. International Journal of Forecasting 25(1):74-80.
    • (2009) International Journal of Forecasting , vol.25 , Issue.1 , pp. 74-80
    • Groen, J.1    Kapetanios, G.2    Price, S.3
  • 63
    • 0003425664 scopus 로고    scopus 로고
    • Isis-1-98. Technical report, Image Speech and Intelligent Systems Group, University of Southampton, UK
    • Gunn S. 1998. Support vector machines for classification and regression. Isis-1-98. Technical report, Image Speech and Intelligent Systems Group, University of Southampton, UK.
    • (1998) Support Vector Machines for Classification and Regression
    • Gunn, S.1
  • 64
    • 4444303978 scopus 로고    scopus 로고
    • Using neural networks for forecasting volatility of S&P 500 index futures prices
    • Hamid S, Iqbal Z. 2004. Using neural networks for forecasting volatility of S&P 500 index futures prices. Journal of Business Research 57:1116-1125.
    • (2004) Journal of Business Research , vol.57 , pp. 1116-1125
    • Hamid, S.1    Iqbal, Z.2
  • 65
    • 0001342006 scopus 로고
    • A new approach to the economic analysis of nonstationary time series and the business cycle
    • Hamilton J. 1989. A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica 57:357-384.
    • (1989) Econometrica , vol.57 , pp. 357-384
    • Hamilton, J.1
  • 66
    • 0003410290 scopus 로고    scopus 로고
    • Princeton University Press: Princeton, NJ
    • Hamilton J. 1997. Time Series Analysis. Princeton University Press: Princeton, NJ.
    • (1997) Time Series Analysis
    • Hamilton, J.1
  • 70
    • 0002021472 scopus 로고
    • Volatility prediction: A comparison of stochastic volatility, GARCH (1, 1) and EGARCH (1, 1) models
    • Heynen R, Kat H. 1994. Volatility prediction: a comparison of stochastic volatility, GARCH (1, 1) and EGARCH (1, 1) models. Journal of Derivatives 50-65.
    • (1994) Journal of Derivatives , pp. 50-65
    • Heynen, R.1    Kat, H.2
  • 71
    • 0033227421 scopus 로고    scopus 로고
    • Combining conditional volatility forecasts using neural networks: An application to the EMS exchange rates
    • Hu M, Tsoukalas C, 1999. Combining conditional volatility forecasts using neural networks: an application to the EMS exchange rates. Journal of International Financial Markets, Institution and Money 9:407-422.
    • (1999) Journal of International Financial Markets, Institution and Money , vol.9 , pp. 407-422
    • Hu, M.1    Tsoukalas, C.2
  • 72
    • 84993915193 scopus 로고
    • Predicting volatility in the foreign exchange market
    • Jorion P. 1995. Predicting volatility in the foreign exchange market. Journal of Finance 50:507-528.
    • (1995) Journal of Finance , vol.50 , pp. 507-528
    • Jorion, P.1
  • 74
    • 0036524551 scopus 로고    scopus 로고
    • Improving GARCH volatility forecasts with regime-switching GARCH
    • Klaassen F. 2002. Improving GARCH volatility forecasts with regime-switching GARCH. Empirical Economics 27:363-394.
    • (2002) Empirical Economics , vol.27 , pp. 363-394
    • Klaassen, F.1
  • 75
    • 19644389883 scopus 로고    scopus 로고
    • Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements
    • Koopman S, Jungbacker B, Hol E. 2005. Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements. Journal of Empirical Finance 12:445-475.
    • (2005) Journal of Empirical Finance , vol.12 , pp. 445-475
    • Koopman, S.1    Jungbacker, B.2    Hol, E.3
  • 76
    • 84983857211 scopus 로고
    • Forecasting exchange rates using feedforward and recurrent neural networks
    • Kuan C, Liu T. 1995. Forecasting exchange rates using feedforward and recurrent neural networks. Journal of Applied Econometrics 10:347-364.
    • (1995) Journal of Applied Econometrics , vol.10 , pp. 347-364
    • Kuan, C.1    Liu, T.2
  • 77
    • 21144472851 scopus 로고
    • Forecasting stock-return variance: Understanding of stochastic implied volatilities
    • Lamoureux C, Lastrapes W. 1993. Forecasting stock-return variance: understanding of stochastic implied volatilities. Review of Financial Studies 6:293-326.
    • (1993) Review of Financial Studies , vol.6 , pp. 293-326
    • Lamoureux, C.1    Lastrapes, W.2
  • 79
    • 0036077158 scopus 로고    scopus 로고
    • Recent theoretical results for time series models with GARCH errors
    • Li W, Ling S, McAleer M. 2002. Recent theoretical results for time series models with GARCH errors. Journal of Economic Surveys 16:245-269.
    • (2002) Journal of Economic Surveys , vol.16 , pp. 245-269
    • Li, W.1    Ling, S.2    McAleer, M.3
  • 80
    • 13844252017 scopus 로고    scopus 로고
    • Genetic learning as an explanation of stylized facts of foreign exchange markets
    • Lux T, Schornstein S. 2005. Genetic learning as an explanation of stylized facts of foreign exchange markets. Journal of Mathematical Economics 41:169-196.
    • (2005) Journal of Mathematical Economics , vol.41 , pp. 169-196
    • Lux, T.1    Schornstein, S.2
  • 82
    • 4744342417 scopus 로고    scopus 로고
    • Daily volatility forecasts: Reassessing the performance of GARCH models
    • McMillan D, Speight A. 2004. Daily volatility forecasts: reassessing the performance of GARCH models. Journal of Forecasting 23(6):449-460.
    • (2004) Journal of Forecasting , vol.23 , Issue.6 , pp. 449-460
    • McMillan, D.1    Speight, A.2
  • 83
    • 0012907277 scopus 로고    scopus 로고
    • Forecasting UK stock market volatility: A comparative analysis of alternate methods
    • McMillan D, Speight A, Gwilym O. 2000. Forecasting UK stock market volatility: a comparative analysis of alternate methods. Applied Financial Economics 10:435-448.
    • (2000) Applied Financial Economics , vol.10 , pp. 435-448
    • McMillan, D.1    Speight, A.2    Gwilym, O.3
  • 84
    • 2642518538 scopus 로고    scopus 로고
    • ARMA representations of integrated and realized variances
    • Meddahi N. 2003. ARMA representations of integrated and realized variances. Econometrics Journal 6:334-355.
    • (2003) Econometrics Journal , vol.6 , pp. 334-355
    • Meddahi, N.1
  • 86
    • 57649193083 scopus 로고    scopus 로고
    • Forecasting foreign exchange volatility: Why is implied volatility biased and inefficient? And does it matter?
    • Neely C. 2009. Forecasting foreign exchange volatility: why is implied volatility biased and inefficient? And does it matter? Journal of International Financial Markets, Institutions and Money 19(1):188-205.
    • (2009) Journal of International Financial Markets, Institutions and Money , vol.19 , Issue.1 , pp. 188-205
    • Neely, C.1
  • 87
    • 0000641348 scopus 로고
    • Conditional heteroskedasticity in asset returns: A new approach
    • Nelson D. 1991. Conditional heteroskedasticity in asset returns: a new approach. Econometrica 59:347-370.
    • (1991) Econometrica , vol.59 , pp. 347-370
    • Nelson, D.1
  • 88
    • 0000706085 scopus 로고
    • A simple positive, semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix
    • Newey W, West K. 1987. A simple positive, semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica 55(3):703-708.
    • (1987) Econometrica , vol.55 , Issue.3 , pp. 703-708
    • Newey, W.1    West, K.2
  • 90
    • 45149141217 scopus 로고
    • Alternative models for conditional stock volatility
    • Pagan A, Schwert G. 1990. Alternative models for conditional stock volatility. Journal of Econometrics 45:267-290.
    • (1990) Journal of Econometrics , vol.45 , pp. 267-290
    • Pagan, A.1    Schwert, G.2
  • 91
    • 28444474633 scopus 로고    scopus 로고
    • Development of a multifunctional sales response model with the diagnostic aid of artificial neural networks
    • Pantelidaki S, Bunn D. 2005. Development of a multifunctional sales response model with the diagnostic aid of artificial neural networks. Journal of Forecasting 24:505-521.
    • (2005) Journal of Forecasting , vol.24 , pp. 505-521
    • Pantelidaki, S.1    Bunn, D.2
  • 92
    • 0036684420 scopus 로고    scopus 로고
    • An outlier robust GARCH model and forecasting volatility of exchange rate returns
    • Park B. 2002. An outlier robust GARCH model and forecasting volatility of exchange rate returns. Journal of Forecasting 21(5):381-393.
    • (2002) Journal of Forecasting , vol.21 , Issue.5 , pp. 381-393
    • Park, B.1
  • 94
    • 4544369828 scopus 로고    scopus 로고
    • Forecasting currency volatility: A comparison of implied volatilities and AR (FI) MA models
    • Pong S, Shackleton M, Taylor S, Xu X. 2004. Forecasting currency volatility: a comparison of implied volatilities and AR (FI) MA models. Journal of Banking and Finance 28:2541-2563.
    • (2004) Journal of Banking and Finance , vol.28 , pp. 2541-2563
    • Pong, S.1    Shackleton, M.2    Taylor, S.3    Xu, X.4
  • 95
    • 0344547293 scopus 로고    scopus 로고
    • Forecasting volatility in financial markets: A review
    • Poon S-H, Granger C. 2003. Forecasting volatility in financial markets: a review. Journal of Economic Literature 41:478-539.
    • (2003) Journal of Economic Literature , vol.41 , pp. 478-539
    • S-H, P.1    Granger, C.2
  • 96
    • 33847050190 scopus 로고    scopus 로고
    • Forecasting exchange rates: A robust regression approach
    • Preminger A, Franck R. 2007. Forecasting exchange rates: a robust regression approach. International Journal of Forecasting 23(1):71-84.
    • (2007) International Journal of Forecasting , vol.23 , Issue.1 , pp. 71-84
    • Preminger, A.1    Franck, R.2
  • 97
    • 0042342715 scopus 로고    scopus 로고
    • Nonlinear prediction of exchange rates with monetary fundamentals
    • Qi M, Wu Y. 2003. Nonlinear prediction of exchange rates with monetary fundamentals. Journal of Empirical Finance 10:623-640.
    • (2003) Journal of Empirical Finance , vol.10 , pp. 623-640
    • Qi, M.1    Wu, Y.2
  • 98
    • 33344475386 scopus 로고    scopus 로고
    • Nonparametric estimation of stochastic volatility models
    • Renò R. 2006. Nonparametric estimation of stochastic volatility models. Economics Letters 90(3):390-395.
    • (2006) Economics Letters , vol.90 , Issue.3 , pp. 390-395
    • Renò, R.1
  • 99
    • 36949030860 scopus 로고    scopus 로고
    • Determining the optimal dimensionality of multivariate volatility models with tools from random matrix theory
    • Rosenow B. 2008. Determining the optimal dimensionality of multivariate volatility models with tools from random matrix theory. Journal of Economic Dynamics and Control 32(1):279-302.
    • (2008) Journal of Economic Dynamics and Control , vol.32 , Issue.1 , pp. 279-302
    • Rosenow, B.1
  • 100
    • 0001344388 scopus 로고    scopus 로고
    • Forecasting time-dependent conditional densities: A semi-nonparametric neural network approach
    • Schittenkopf C, Dorffner G, Dockner E. 2000. Forecasting time-dependent conditional densities: a semi-nonparametric neural network approach. Journal of Forecasting 19:355-374.
    • (2000) Journal of Forecasting , vol.19 , pp. 355-374
    • Schittenkopf, C.1    Dorffner, G.2    Dockner, E.3
  • 104
    • 0001023715 scopus 로고    scopus 로고
    • Application of support vector machines in financial time series forecasting
    • Tay F, Cao L. 2001. Application of support vector machines in financial time series forecasting. Omega 29:309-317.
    • (2001) Omega , vol.29 , pp. 309-317
    • Tay, F.1    Cao, L.2
  • 105
    • 0000588489 scopus 로고    scopus 로고
    • Evaluating volatility and interval forecasts
    • Taylor J. 1999. Evaluating volatility and interval forecasts. Journal of Forecasting 18:111-128.
    • (1999) Journal of Forecasting , vol.18 , pp. 111-128
    • Taylor, J.1
  • 106
    • 1842780931 scopus 로고    scopus 로고
    • A quantile regression neural network approach to estimating the conditional density of multiperiod returns
    • Taylor J. 2000. A quantile regression neural network approach to estimating the conditional density of multiperiod returns. Journal of Forecasting 19:299-311.
    • (2000) Journal of Forecasting , vol.19 , pp. 299-311
    • Taylor, J.1
  • 107
    • 49349101884 scopus 로고    scopus 로고
    • Can idiosyncratic volatility help forecast stock market volatility?
    • Taylor N. 2008. Can idiosyncratic volatility help forecast stock market volatility? International Journal of Forecasting 24(3):462-479.
    • (2008) International Journal of Forecasting , vol.24 , Issue.3 , pp. 462-479
    • Taylor, N.1
  • 109
    • 0002721552 scopus 로고
    • Forecasting volatility in the singapore stock market
    • Tse Y, Tung S. 1992. Forecasting volatility in the singapore stock market. Asia Pacific Journal of Management 9:1-13.
    • (1992) Asia Pacific Journal of Management , vol.9 , pp. 1-13
    • Tse, Y.1    Tung, S.2
  • 110
    • 40849106377 scopus 로고    scopus 로고
    • Artificial neural network model of the hybrid EGARCH volatility of the taiwan stock index option prices
    • Tseng C, Cheng S, Wang Y, Peng J. 2008. Artificial neural network model of the hybrid EGARCH volatility of the taiwan stock index option prices. Physica A: Statistical Mechanics and its Applications 387(13):3192-3200.
    • (2008) Physica A: Statistical Mechanics and its Applications , vol.387 , Issue.13 , pp. 3192-3200
    • Tseng, C.1    Cheng, S.2    Wang, Y.3    Peng, J.4
  • 113
    • 0030353235 scopus 로고    scopus 로고
    • Asymptotic inference about predictive ability
    • West K. 1996. Asymptotic inference about predictive ability. Econometrica 64:1067-1084.
    • (1996) Econometrica , vol.64 , pp. 1067-1084
    • West, K.1
  • 114
    • 0000650195 scopus 로고
    • The predictive ability of several models of exchange rate volatility
    • West K, Cho D. 1995. The predictive ability of several models of exchange rate volatility. Journal of Econometrics 69:367-391.
    • (1995) Journal of Econometrics , vol.69 , pp. 367-391
    • West, K.1    Cho, D.2
  • 115
    • 56549103208 scopus 로고    scopus 로고
    • Market imperfections and the information content of implied and realized volatility
    • Wong W, Tu A. 2009. Market imperfections and the information content of implied and realized volatility. Pacific Basin Finance Journal 17(1):58-79.
    • (2009) Pacific Basin Finance Journal , vol.17 , Issue.1 , pp. 58-79
    • Wong, W.1    Tu, A.2
  • 116
    • 12344319157 scopus 로고    scopus 로고
    • Influence diagnostics in generalized autoregressive conditional heteroscedasticity processes
    • Zhang X, King M. 2005. Influence diagnostics in generalized autoregressive conditional heteroscedasticity processes. Journal of Business and Economic Statistics 23:118-129.
    • (2005) Journal of Business and Economic Statistics , vol.23 , pp. 118-129
    • Zhang, X.1    King, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.