메뉴 건너뛰기




Volumn 90, Issue 1, 2013, Pages 59-90

New algorithms for budgeted learning

Author keywords

Budgeted learning; Multi armed bandit

Indexed keywords

BUDGETED LEARNING; CLASS LABELS; FREE ACCESS; LEARNING MODELS; MULTI ARMED BANDIT; MULTI-ARMED BANDIT PROBLEM; PERFORMANCE IMPROVEMENTS; SECOND ORDER STATISTICS; TRAINING EXAMPLE;

EID: 84871928644     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-012-5299-2     Document Type: Article
Times cited : (11)

References (38)
  • 4
    • 0036568025 scopus 로고    scopus 로고
    • Finite-time analysis of the multiarmed bandit problem
    • 10.1023/A:1013689704352
    • Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002a). Finite-time analysis of the multiarmed bandit problem. Machine Learning, 47, 235-256.
    • (2002) Machine Learning , vol.47 , pp. 235-256
    • Auer, P.1    Cesa-Bianchi, N.2    Fischer, P.3
  • 13
    • 0036680338 scopus 로고    scopus 로고
    • Learning cost-sensitive active classifiers
    • 1930605 10.1016/S0004-3702(02)00209-6
    • Greiner, R., Grove, A. J., & Roth, D. (2002). Learning cost-sensitive active classifiers. Artificial Intelligence, 139, 137-174.
    • (2002) Artificial Intelligence , vol.139 , pp. 137-174
    • Greiner, R.1    Grove, A.J.2    Roth, D.3
  • 14
    • 35448979910 scopus 로고    scopus 로고
    • Approximation algorithms for budgeted learning problems
    • Guha, S., & Munagala, K. (2007). Approximation algorithms for budgeted learning problems. In ACM symposium on theory of computing (pp. 104-113).
    • (2007) ACM Symposium on Theory of Computing , pp. 104-113
    • Guha, S.1    Munagala, K.2
  • 15
    • 24644463787 scopus 로고    scopus 로고
    • Efficient algorithms for online decision problems
    • 2168355 10.1016/j.jcss.2004.10.016
    • Kalai, A., & Vempala, S. (2005). Efficient algorithms for online decision problems. Journal of Computer and System Sciences, 71, 291-307.
    • (2005) Journal of Computer and System Sciences , vol.71 , pp. 291-307
    • Kalai, A.1    Vempala, S.2
  • 16
    • 49749133698 scopus 로고    scopus 로고
    • Budgeted learning of bounded active classifiers
    • Held in conjunction with the 11th ACM SIGKDD international conference on knowledge discovery and data mining (KDD 2005)
    • Kapoor, A., & Greiner, R. (2005a). Budgeted learning of bounded active classifiers. In Proceedings of the ACM SIGKDD workshop on utility-based data mining. Held in conjunction with the 11th ACM SIGKDD international conference on knowledge discovery and data mining (KDD 2005).
    • (2005) Proceedings of the ACM SIGKDD Workshop on Utility-based Data Mining
    • Kapoor, A.1    Greiner, R.2
  • 18
    • 77953565591 scopus 로고    scopus 로고
    • Reinforcement learning for active model selection
    • 10.1145/1089827.1089829 Held in conjunction with the 11th ACM SIGKDD international conference on knowledge discovery and data mining (KDD 2005)
    • Kapoor, A., & Greiner, R. (2005c). Reinforcement learning for active model selection. In Proceedings of the ACM SIGKDD workshop on utility-based data mining (pp. 17-23). Held in conjunction with the 11th ACM SIGKDD international conference on knowledge discovery and data mining (KDD 2005).
    • (2005) Proceedings of the ACM SIGKDD Workshop on Utility-based Data Mining , pp. 17-23
    • Kapoor, A.1    Greiner, R.2
  • 19
    • 0002899547 scopus 로고
    • Asymptotically efficient adaptive allocation rules
    • 776826 10.1016/0196-8858(85)90002-8
    • Lai, T. L., & Robbins, H. (1985). Asymptotically efficient adaptive allocation rules. Advances in Applied Mathematics, 6, 4-22.
    • (1985) Advances in Applied Mathematics , vol.6 , pp. 4-22
    • Lai, T.L.1    Robbins, H.2
  • 29
    • 84966203785 scopus 로고
    • Some aspects of the sequential design of experiments
    • 50246 10.1090/S0002-9904-1952-09620-8
    • Robbins, H. (1952). Some aspects of the sequential design of experiments. Bulletin of the American Mathematical Society, 55, 527-535.
    • (1952) Bulletin of the American Mathematical Society , vol.55 , pp. 527-535
    • Robbins, H.1
  • 32
    • 68949137209 scopus 로고    scopus 로고
    • (Technical Report 1648). University of Wisconsin-Madison
    • Settles, B. (2009). Active learning literature survey (Technical Report 1648). University of Wisconsin-Madison.
    • (2009) Active Learning Literature Survey
    • Settles, B.1
  • 33
    • 0042868698 scopus 로고    scopus 로고
    • Support vector machine active learning with applications to text classification
    • Tong, S., & Koller, D. (2001). Support vector machine active learning with applications to text classification. Journal of Machine Learning Research, 2, 45-66.
    • (2001) Journal of Machine Learning Research , vol.2 , pp. 45-66
    • Tong, S.1    Koller, D.2
  • 35
    • 31844436266 scopus 로고    scopus 로고
    • Bayesian sparse sampling for on-line reward optimization
    • 10.1145/1102351.1102472
    • Wang, T., Lizotte, D., Bowling, M., & Schuurmans, D. (2005). Bayesian sparse sampling for on-line reward optimization. In ICML 2005 (pp. 956-963).
    • (2005) ICML 2005 , pp. 956-963
    • Wang, T.1    Lizotte, D.2    Bowling, M.3    Schuurmans, D.4
  • 36
    • 0001884644 scopus 로고
    • Individual comparisons by ranking methods
    • 10.2307/3001968
    • Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics Bulletin, 1(6), 80-83.
    • (1945) Biometrics Bulletin , vol.1 , Issue.6 , pp. 80-83
    • Wilcoxon, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.