-
4
-
-
0036568025
-
Finite-time analysis of the multiarmed bandit problem
-
10.1023/A:1013689704352
-
Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002a). Finite-time analysis of the multiarmed bandit problem. Machine Learning, 47, 235-256.
-
(2002)
Machine Learning
, vol.47
, pp. 235-256
-
-
Auer, P.1
Cesa-Bianchi, N.2
Fischer, P.3
-
5
-
-
0037709910
-
The non-stochastic multi-armed bandit problem
-
1954855 10.1137/S0097539701398375
-
Auer, P., Cesa-Bianchi, N., Freund, Y., & Schapire, R. E. (2002b). The non-stochastic multi-armed bandit problem. SIAM Journal on Computing, 32, 48-77.
-
(2002)
SIAM Journal on Computing
, vol.32
, pp. 48-77
-
-
Auer, P.1
Cesa-Bianchi, N.2
Freund, Y.3
Schapire, R.E.4
-
9
-
-
49749103596
-
Bandit-based algorithms for budgeted learning
-
IEEE Comput. Soc. Washington 10.1109/ICDM.2007.91
-
Deng, K., Bourke, C., Scott, S., Sunderman, J., & Zheng, Y. (2007). Bandit-based algorithms for budgeted learning. In ICDM '07: proceedings of the 2007 seventh IEEE international conference on data mining (pp. 463-468). Washington: IEEE Comput. Soc.
-
(2007)
ICDM '07: Proceedings of the 2007 Seventh IEEE International Conference on Data Mining
, pp. 463-468
-
-
Deng, K.1
Bourke, C.2
Scott, S.3
Sunderman, J.4
Zheng, Y.5
-
12
-
-
70349137085
-
The ratio index for budgeted learning, with applications
-
SIAM Philadelphia
-
Goel, A., Khanna, S., & Null, B. (2009). The ratio index for budgeted learning, with applications. In SODA '09: proceedings of the nineteenth annual ACM-SIAM symposium on discrete algorithms (pp. 18-27). Philadelphia: SIAM.
-
(2009)
SODA '09: Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms
, pp. 18-27
-
-
Goel, A.1
Khanna, S.2
Null, B.3
-
13
-
-
0036680338
-
Learning cost-sensitive active classifiers
-
1930605 10.1016/S0004-3702(02)00209-6
-
Greiner, R., Grove, A. J., & Roth, D. (2002). Learning cost-sensitive active classifiers. Artificial Intelligence, 139, 137-174.
-
(2002)
Artificial Intelligence
, vol.139
, pp. 137-174
-
-
Greiner, R.1
Grove, A.J.2
Roth, D.3
-
14
-
-
35448979910
-
Approximation algorithms for budgeted learning problems
-
Guha, S., & Munagala, K. (2007). Approximation algorithms for budgeted learning problems. In ACM symposium on theory of computing (pp. 104-113).
-
(2007)
ACM Symposium on Theory of Computing
, pp. 104-113
-
-
Guha, S.1
Munagala, K.2
-
15
-
-
24644463787
-
Efficient algorithms for online decision problems
-
2168355 10.1016/j.jcss.2004.10.016
-
Kalai, A., & Vempala, S. (2005). Efficient algorithms for online decision problems. Journal of Computer and System Sciences, 71, 291-307.
-
(2005)
Journal of Computer and System Sciences
, vol.71
, pp. 291-307
-
-
Kalai, A.1
Vempala, S.2
-
16
-
-
49749133698
-
Budgeted learning of bounded active classifiers
-
Held in conjunction with the 11th ACM SIGKDD international conference on knowledge discovery and data mining (KDD 2005)
-
Kapoor, A., & Greiner, R. (2005a). Budgeted learning of bounded active classifiers. In Proceedings of the ACM SIGKDD workshop on utility-based data mining. Held in conjunction with the 11th ACM SIGKDD international conference on knowledge discovery and data mining (KDD 2005).
-
(2005)
Proceedings of the ACM SIGKDD Workshop on Utility-based Data Mining
-
-
Kapoor, A.1
Greiner, R.2
-
18
-
-
77953565591
-
Reinforcement learning for active model selection
-
10.1145/1089827.1089829 Held in conjunction with the 11th ACM SIGKDD international conference on knowledge discovery and data mining (KDD 2005)
-
Kapoor, A., & Greiner, R. (2005c). Reinforcement learning for active model selection. In Proceedings of the ACM SIGKDD workshop on utility-based data mining (pp. 17-23). Held in conjunction with the 11th ACM SIGKDD international conference on knowledge discovery and data mining (KDD 2005).
-
(2005)
Proceedings of the ACM SIGKDD Workshop on Utility-based Data Mining
, pp. 17-23
-
-
Kapoor, A.1
Greiner, R.2
-
19
-
-
0002899547
-
Asymptotically efficient adaptive allocation rules
-
776826 10.1016/0196-8858(85)90002-8
-
Lai, T. L., & Robbins, H. (1985). Asymptotically efficient adaptive allocation rules. Advances in Applied Mathematics, 6, 4-22.
-
(1985)
Advances in Applied Mathematics
, vol.6
, pp. 4-22
-
-
Lai, T.L.1
Robbins, H.2
-
23
-
-
38149058224
-
Active class selection
-
Springer Berlin 10.1007/978-3-540-74958-5-63
-
Lomasky, R., Brodley, C., Aernecke, M., Walt, D., & Friedl, M. (2007). Active class selection. In Machine learning: ECML 2007 (pp. 640-647). Berlin: Springer.
-
(2007)
Machine Learning: ECML 2007
, pp. 640-647
-
-
Lomasky, R.1
Brodley, C.2
Aernecke, M.3
Walt, D.4
Friedl, M.5
-
24
-
-
33749817930
-
Active model selection
-
Banff, Canada
-
Madani, O., Lizotte, D., & Greiner, R. (2004). Active model selection. In Proceedings of the 20th conference on uncertainty in artificial intelligence (pp. 357-365). Banff, Canada.
-
(2004)
Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence
, pp. 357-365
-
-
Madani, O.1
Lizotte, D.2
Greiner, R.3
-
26
-
-
19544373606
-
Active feature-value acquisition for classifier induction
-
10.1109/ICDM.2004.10075
-
Melville, P., Saar-Tsechansky, M., Provost, F., & Mooney, R. (2004). Active feature-value acquisition for classifier induction. In Fourth IEEE international conference on data mining (pp. 483-486).
-
(2004)
Fourth IEEE International Conference on Data Mining
, pp. 483-486
-
-
Melville, P.1
Saar-Tsechansky, M.2
Provost, F.3
Mooney, R.4
-
27
-
-
34548588846
-
An expected utility approach to active feature-value acquisition
-
Melville, P., Saar-Tsechansky, M., Provost, F., & Mooney, R. (2005). An expected utility approach to active feature-value acquisition. In Fifth IEEE international conference on data mining (p. 4).
-
(2005)
Fifth IEEE International Conference on Data Mining
, pp. 4
-
-
Melville, P.1
Saar-Tsechansky, M.2
Provost, F.3
Mooney, R.4
-
29
-
-
84966203785
-
Some aspects of the sequential design of experiments
-
50246 10.1090/S0002-9904-1952-09620-8
-
Robbins, H. (1952). Some aspects of the sequential design of experiments. Bulletin of the American Mathematical Society, 55, 527-535.
-
(1952)
Bulletin of the American Mathematical Society
, vol.55
, pp. 527-535
-
-
Robbins, H.1
-
30
-
-
67650302608
-
Active feature-value acquisition
-
10.1287/mnsc.1080.0952
-
Saar-Tsechansky, M., Melville, P., & Provost, F. (2009). Active feature-value acquisition. Management Science, 55, 664-684.
-
(2009)
Management Science
, vol.55
, pp. 664-684
-
-
Saar-Tsechansky, M.1
Melville, P.2
Provost, F.3
-
32
-
-
68949137209
-
-
(Technical Report 1648). University of Wisconsin-Madison
-
Settles, B. (2009). Active learning literature survey (Technical Report 1648). University of Wisconsin-Madison.
-
(2009)
Active Learning Literature Survey
-
-
Settles, B.1
-
33
-
-
0042868698
-
Support vector machine active learning with applications to text classification
-
Tong, S., & Koller, D. (2001). Support vector machine active learning with applications to text classification. Journal of Machine Learning Research, 2, 45-66.
-
(2001)
Journal of Machine Learning Research
, vol.2
, pp. 45-66
-
-
Tong, S.1
Koller, D.2
-
35
-
-
31844436266
-
Bayesian sparse sampling for on-line reward optimization
-
10.1145/1102351.1102472
-
Wang, T., Lizotte, D., Bowling, M., & Schuurmans, D. (2005). Bayesian sparse sampling for on-line reward optimization. In ICML 2005 (pp. 956-963).
-
(2005)
ICML 2005
, pp. 956-963
-
-
Wang, T.1
Lizotte, D.2
Bowling, M.3
Schuurmans, D.4
-
36
-
-
0001884644
-
Individual comparisons by ranking methods
-
10.2307/3001968
-
Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics Bulletin, 1(6), 80-83.
-
(1945)
Biometrics Bulletin
, vol.1
, Issue.6
, pp. 80-83
-
-
Wilcoxon, F.1
|