메뉴 건너뛰기




Volumn 28, Issue 6, 2012, Pages 485-499

An approach for identifying and predicting economic recessions in real-time using time-frequency functional models

Author keywords

Bayesian model averaging; business cycles; empirical orthogonal functions; functional data; MIDAS; spectrogram; stochastic search variable selection

Indexed keywords

BAYESIAN MODEL AVERAGING; BUSINESS CYCLES; EMPIRICAL ORTHOGONAL FUNCTION; FUNCTIONAL DATAS; MIDAS; SPECTROGRAMS; VARIABLE SELECTION;

EID: 84871840976     PISSN: 15241904     EISSN: 15264025     Source Type: Journal    
DOI: 10.1002/asmb.1954     Document Type: Article
Times cited : (10)

References (37)
  • 1
    • 0001342006 scopus 로고
    • A new approach to the economic analysis of nonstationary time series and the business cycle
    • Hamilton J,. A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica 1989 27: 1006-1026.
    • (1989) Econometrica , vol.27 , pp. 1006-1026
    • Hamilton, J.1
  • 2
    • 84856402022 scopus 로고    scopus 로고
    • Estimating probabilities of recession in real time using GDP and GDI
    • Nalewaik J,. Estimating probabilities of recession in real time using GDP and GDI. Journal of Money, Credit and Banking 2012 44: 235-253.
    • (2012) Journal of Money, Credit and Banking , vol.44 , pp. 235-253
    • Nalewaik, J.1
  • 3
    • 0000076932 scopus 로고
    • New indexes of coincident and leading economic indicators
    • Stock J, Watson M,. New indexes of coincident and leading economic indicators. NBER Macroeconomic Annual 1989 4: 351-394.
    • (1989) NBER Macroeconomic Annual , vol.4 , pp. 351-394
    • Stock, J.1    Watson, M.2
  • 4
    • 0003153605 scopus 로고    scopus 로고
    • A probability model of the coincident economic indicators
    • Lahiri K. Moore G. (eds), Cambridge University Press, Cambridge.
    • Stock J, Watson M,. 1999. A probability model of the coincident economic indicators, In In Leading Economic Indicators: New Approaches and Forecasting Records, Lahiri K, Moore G, (eds), Cambridge University Press, Cambridge.
    • (1999) Leading Economic Indicators: New Approaches and Forecasting Records
    • Stock, J.1    Watson, M.2
  • 5
    • 15544388646 scopus 로고    scopus 로고
    • Forecasting recessions using the yield curve
    • DOI 10.1002/for.932
    • Chauvet M, Potter S,. Forecasting recessions using the yield curve. Journal of Forecasting 2005 24 (2): 77-103. (Pubitemid 40402367)
    • (2005) Journal of Forecasting , vol.24 , Issue.2 , pp. 77-103
    • Chauvet, M.1    Potter, S.2
  • 6
    • 0039066423 scopus 로고    scopus 로고
    • Predicting U.S. Recessions: Financial Variables as Leading Indicators
    • Estrella A, Mishkin F,. Predicting US recessions: financial variables as leading indicators. Review of Economics and Statistics 1998 80 (1): 45-61. (Pubitemid 128071465)
    • (1998) Review of Economics and Statistics , vol.80 , Issue.1 , pp. 45-61
    • Estrella, A.1    Mishkin, F.S.2
  • 7
    • 55549127175 scopus 로고    scopus 로고
    • Predicting US recessions with dynamic binary response models
    • Kauppi H, Saikkonen P,. Predicting US recessions with dynamic binary response models. The Review of Economics and Statistics 2008 90 (4): 777-791.
    • (2008) The Review of Economics and Statistics , vol.90 , Issue.4 , pp. 777-791
    • Kauppi, H.1    Saikkonen, P.2
  • 8
    • 38349037128 scopus 로고    scopus 로고
    • Dating business cycle turning points
    • Milas C. Rothman P. van Dijk D. (eds), Elsevier, Amsterdam.
    • Chauvet M, Hamilton J,. 2006. Dating business cycle turning points, In In Nonlinear Time Series Analysis of Business Cycles, Milas C, Rothman P, van Dijk D, (eds), Elsevier, Amsterdam.
    • (2006) Nonlinear Time Series Analysis of Business Cycles
    • Chauvet, M.1    Hamilton, J.2
  • 9
    • 33646425618 scopus 로고    scopus 로고
    • What's real about the business cycle?
    • Hamilton J,. What's real about the business cycle? Federal Reserve Bank of St. Louis Review 2005 87: 435-452. (Pubitemid 43678947)
    • (2005) Federal Reserve Bank of St. Louis Review , vol.87 , Issue.4 , pp. 435-452
    • Hamilton, J.D.1
  • 10
    • 38349051931 scopus 로고    scopus 로고
    • A comparison of the real-time performance of business cycle dating methods
    • Chauvet M, Piger J,. A comparison of the real-time performance of business cycle dating methods. Journal of Business and Economic Statistics 2008 26 (1): 42-49.
    • (2008) Journal of Business and Economic Statistics , vol.26 , Issue.1 , pp. 42-49
    • Chauvet, M.1    Piger, J.2
  • 12
    • 77953511561 scopus 로고    scopus 로고
    • Introducing the euro-sting: Short-term indicator of euro area growth
    • Camacho M, Perez-Quiros G,. Introducing the euro-sting: short-term indicator of euro area growth. Journal of Applied Econometrics 2010 25 (4): 663-694.
    • (2010) Journal of Applied Econometrics , vol.25 , Issue.4 , pp. 663-694
    • Camacho, M.1    Perez-Quiros, G.2
  • 14
    • 77956802000 scopus 로고    scopus 로고
    • Modeling complex phenotypes: Generalized linear models using spectrogram predictors of animal communication signals
    • Holan S, Wikle C, Sullivan-Beckers L, Cocroft R,. Modeling complex phenotypes: generalized linear models using spectrogram predictors of animal communication signals. Biometrics 2010 66 (3): 914-924.
    • (2010) Biometrics , vol.66 , Issue.3 , pp. 914-924
    • Holan, S.1    Wikle, C.2    Sullivan-Beckers, L.3    Cocroft, R.4
  • 16
    • 77949757564 scopus 로고    scopus 로고
    • Functional generalized linear models with images as predictors
    • Reiss P, Ogden RT,. Functional generalized linear models with images as predictors. Biometrics 2010 66 (1): 61-69.
    • (2010) Biometrics , vol.66 , Issue.1 , pp. 61-69
    • Reiss, P.1    Ogden, R.T.2
  • 17
    • 80054689503 scopus 로고    scopus 로고
    • Automated analysis of quantitative image data using isomorphic functional mixed models, with application to proteomics data
    • Morris J, Baladandayuthapani V, Herrick R, Sanna P, Gutstein H,. Automated analysis of quantitative image data using isomorphic functional mixed models, with application to proteomics data. The Annals of Applied Statistics 2011 5 (2): 894-923.
    • (2011) The Annals of Applied Statistics , vol.5 , Issue.2 , pp. 894-923
    • Morris, J.1    Baladandayuthapani, V.2    Herrick, R.3    Sanna, P.4    Gutstein, H.5
  • 18
    • 33847296651 scopus 로고    scopus 로고
    • MIDAS regressions: Further results and new directions
    • Ghysels E, Sinko A, Valkanov R,. MIDAS regressions: further results and new directions. Econometric Reviews 2007 26 (1): 53-90.
    • (2007) Econometric Reviews , vol.26 , Issue.1 , pp. 53-90
    • Ghysels, E.1    Sinko, A.2    Valkanov, R.3
  • 20
    • 77649270244 scopus 로고    scopus 로고
    • Mixed frequency models: Bayesian approaches to estimation and prediction
    • Rodriguez A, Puggioni G,. Mixed frequency models: Bayesian approaches to estimation and prediction. International Journal of Forecasting 2010 26 (2): 293-311.
    • (2010) International Journal of Forecasting , vol.26 , Issue.2 , pp. 293-311
    • Rodriguez, A.1    Puggioni, G.2
  • 22
    • 0000414912 scopus 로고    scopus 로고
    • A dimension-reduced approach to space-time Kalman filtering
    • Wikle C, Cressie N,. A dimension-reduced approach to space-time Kalman filtering. Biometrika 1999 86 (4): 815-829.
    • (1999) Biometrika , vol.86 , Issue.4 , pp. 815-829
    • Wikle, C.1    Cressie, N.2
  • 25
    • 35348906983 scopus 로고    scopus 로고
    • Functional principal component regression and functional partial least squares
    • Reiss P, Ogden R,. Functional principal component regression and functional partial least squares. Journal of the American Statistical Association 2007 102 (479): 984-996.
    • (2007) Journal of the American Statistical Association , vol.102 , Issue.479 , pp. 984-996
    • Reiss, P.1    Ogden, R.2
  • 27
    • 0031526204 scopus 로고    scopus 로고
    • Approaches for Bayesian variable selection
    • George E, McCulloch R,. Approaches for Bayesian variable selection. Statistica Sinica 1997 7: 339-374. (Pubitemid 127084819)
    • (1997) Statistica Sinica , vol.7 , Issue.2 , pp. 339-374
    • George, E.I.1    McCulloch, R.E.2
  • 33
    • 84916537550 scopus 로고
    • Bayesian analysis of binary and polychotomous response data
    • Albert J, Chib S,. Bayesian analysis of binary and polychotomous response data. Journal of the American Statistical Association 1993 88 (422): 669-679.
    • (1993) Journal of the American Statistical Association , vol.88 , Issue.422 , pp. 669-679
    • Albert, J.1    Chib, S.2
  • 35
    • 69249230467 scopus 로고    scopus 로고
    • A review of bayesian variable selection methods: What, how and which
    • O'Hara R, Sillanpää M,. A review of bayesian variable selection methods: what, how and which. Bayesian Analysis 2009 4 (1): 85-118.
    • (2009) Bayesian Analysis , vol.4 , Issue.1 , pp. 85-118
    • O'Hara, R.1    Sillanpää, M.2
  • 36
    • 79953803804 scopus 로고    scopus 로고
    • chap. 8: Low Rank Representations as Models for Spatial Processes, Chapman and Hall/CRC: Boca Raton.
    • Wikle C,. Handbook of Spatial Statistics, chap. 8: Low Rank Representations as Models for Spatial Processes, Chapman and Hall/CRC: Boca Raton, 2010.
    • (2010) Handbook of Spatial Statistics
    • Wikle, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.