메뉴 건너뛰기




Volumn 22, Issue 2, 2012, Pages 415-428

Block clustering with collapsed latent block models

Author keywords

Bayesian model choice; Block clustering; Collapsed model; Latent block model

Indexed keywords


EID: 81955160875     PISSN: 09603174     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11222-011-9233-4     Document Type: Article
Times cited : (55)

References (35)
  • 3
    • 0141688093 scopus 로고    scopus 로고
    • Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions (with discussion)
    • Brooks, S. P., Giudici, P., Roberts, G. O.: Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions (with discussion). J. R. Stat. Soc., Ser. B, Stat. Methodol. 65, 3-39 (2003).
    • (2003) J. R. Stat. Soc., Ser. B, Stat. Methodol. , vol.65 , pp. 3-39
    • Brooks, S.P.1    Giudici, P.2    Roberts, G.O.3
  • 4
    • 34250097087 scopus 로고
    • Algorithms and codes for the assignment problem
    • Carpaneto, G., Martello, S., Toth, P.: Algorithms and codes for the assignment problem. Ann. Oper. Res. 13, 193-223 (1988).
    • (1988) Ann. Oper. Res. , vol.13 , pp. 193-223
    • Carpaneto, G.1    Martello, S.2    Toth, P.3
  • 5
    • 84976683733 scopus 로고
    • Algorithm 548: Solution of the assignment problem
    • Carpaneto, G., Toth, P.: Algorithm 548: Solution of the assignment problem. ACM Trans. Math. Softw. 6, 104-111 (1980).
    • (1980) ACM Trans. Math. Softw. , vol.6 , pp. 104-111
    • Carpaneto, G.1    Toth, P.2
  • 6
    • 2242491935 scopus 로고    scopus 로고
    • Computational and inferential difficulties with mixtures posterior distribution
    • Celeux, G., Hurn, M., Robert, C. P.: Computational and inferential difficulties with mixtures posterior distribution. J. Am. Stat. Assoc. 95, 957-979 (2000).
    • (2000) J. Am. Stat. Assoc. , vol.95 , pp. 957-979
    • Celeux, G.1    Hurn, M.2    Robert, C.P.3
  • 9
    • 0035998835 scopus 로고    scopus 로고
    • Model-based clustering, discriminant analysis and density estimation
    • Fraley, C., Raftery, A. E.: Model-based clustering, discriminant analysis and density estimation. J. Am. Stat. Assoc. 97, 611-631 (2002).
    • (2002) J. Am. Stat. Assoc. , vol.97 , pp. 611-631
    • Fraley, C.1    Raftery, A.E.2
  • 10
    • 0034710876 scopus 로고    scopus 로고
    • Coupled two-way clustering analysis of gene microarray data
    • Getz, G., Levine, E., Domany, E.: Coupled two-way clustering analysis of gene microarray data. Proc. Natl. Acad. Sci. USA 97, 12079-12084 (2000).
    • (2000) Proc. Natl. Acad. Sci. USA , vol.97 , pp. 12079-12084
    • Getz, G.1    Levine, E.2    Domany, E.3
  • 11
    • 39149141568 scopus 로고    scopus 로고
    • Block clustering with Bernoulli mixture models: Comparison of different approaches
    • Govaert, G., Nadif, M.: Block clustering with Bernoulli mixture models: Comparison of different approaches. Comput. Stat. Data Anal. 52, 3233-3245 (2008).
    • (2008) Comput. Stat. Data Anal. , vol.52 , pp. 3233-3245
    • Govaert, G.1    Nadif, M.2
  • 12
    • 77956889087 scopus 로고
    • Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
    • Green, P.: Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82, 711-732 (1995).
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.1
  • 13
    • 0346641850 scopus 로고    scopus 로고
    • Trans-Dimensional Markov chain Monte Carlo
    • P. J. Green, N. L. Hjord, and S. Richardson (Eds.), Oxford: Oxford University Press
    • Green, P. J.: Trans-Dimensional Markov chain Monte Carlo. In: Green, P. J., Hjord, N. L., Richardson, S. (eds.) Highly Structured Stochastic Systems, pp. 179-198. Oxford University Press, Oxford (2003).
    • (2003) Highly Structured Stochastic Systems , pp. 179-198
    • Green, P.J.1
  • 15
    • 84927511887 scopus 로고
    • Direct clustering of a data matrix
    • Hartigan, J. A.: Direct clustering of a data matrix. J. Am. Stat. Assoc. 67, 123-129 (1972).
    • (1972) J. Am. Stat. Assoc. , vol.67 , pp. 123-129
    • Hartigan, J.A.1
  • 16
    • 0034360425 scopus 로고    scopus 로고
    • Bloc voting in the United States senate
    • Hartigan, J. A.: Bloc voting in the United States senate. J. Classif. 17, 29-49 (2000).
    • (2000) J. Classif. , vol.17 , pp. 29-49
    • Hartigan, J.A.1
  • 17
    • 0034818212 scopus 로고    scopus 로고
    • Unsupervised learning by probabilistic latent semantic analysis
    • Hofmann, T.: Unsupervised learning by probabilistic latent semantic analysis. Mach. Learn. 42, 177-196 (2001).
    • (2001) Mach. Learn. , vol.42 , pp. 177-196
    • Hofmann, T.1
  • 19
    • 0037399130 scopus 로고    scopus 로고
    • Spectral Biclustering of microarray data: Coclustering genes and conditions
    • Kluger, Y., Basri, R., Chang, J. T., Gerstein, M.: Spectral Biclustering of microarray data: Coclustering genes and conditions. Genome Res. 13, 703-716 (2003).
    • (2003) Genome Res. , vol.13 , pp. 703-716
    • Kluger, Y.1    Basri, R.2    Chang, J.T.3    Gerstein, M.4
  • 20
    • 0036012349 scopus 로고    scopus 로고
    • Plaid models for gene expression data
    • Lazzeroni, L., Owen, A.: Plaid models for gene expression data. Stat. Sin. 12, 61-86 (2002).
    • (2002) Stat. Sin. , vol.12 , pp. 61-86
    • Lazzeroni, L.1    Owen, A.2
  • 22
    • 0002788893 scopus 로고    scopus 로고
    • A view of the EM algorithm that justifies incremental, sparse, and other variants
    • M. I. Jordan (Ed.), Dordrecht: Kluwer Academic
    • Neal, R. M., Hinton, G. E.: A view of the EM algorithm that justifies incremental, sparse, and other variants. In: Jordan, M. I. (ed.) Learning in Graphical Models, pp. 355-358. Kluwer Academic, Dordrecht (1998).
    • (1998) Learning in Graphical Models , pp. 355-358
    • Neal, R.M.1    Hinton, G.E.2
  • 23
    • 34249663093 scopus 로고    scopus 로고
    • Bayesian finite mixtures: a note on prior specification and posterior computation
    • Technical report. Department of Statistics, University of Glasgow
    • Nobile, A.: Bayesian finite mixtures: a note on prior specification and posterior computation. Technical report. Department of Statistics, University of Glasgow (2005).
    • (2005)
    • Nobile, A.1
  • 24
    • 34249673263 scopus 로고    scopus 로고
    • Bayesian finite mixtures with an unknown number of components: The allocation sampler
    • Nobile, A., Fearnside, A. T.: Bayesian finite mixtures with an unknown number of components: The allocation sampler. Stat. Comput. 17, 147-162 (2007).
    • (2007) Stat. Comput. , vol.17 , pp. 147-162
    • Nobile, A.1    Fearnside, A.T.2
  • 25
    • 0002013327 scopus 로고    scopus 로고
    • Bayesian model comparison via jump diffusions
    • W. R. Gilks, S. Richardson, and D. J. Spiegelhalter (Eds.), London: Chapman & Hall
    • Phillips, D. B., Smith, A. F. M.: Bayesian model comparison via jump diffusions. In: Gilks, W. R., Richardson, S., Spiegelhalter, D. J. (eds.) Markov Chain Monte Carlo in Practice, pp. 215-239. Chapman & Hall, London (1996).
    • (1996) Markov Chain Monte Carlo in Practice , pp. 215-239
    • Phillips, D.B.1    Smith, A.F.M.2
  • 26
    • 18244378520 scopus 로고    scopus 로고
    • On Bayesian analysis of mixtures with an unknown number of components (with discussion)
    • Richardson, S., Green, P. J.: On Bayesian analysis of mixtures with an unknown number of components (with discussion). J. R. Stat. Soc. B 59, 731-792 (1997).
    • (1997) J. R. Stat. Soc. B , vol.59 , pp. 731-792
    • Richardson, S.1    Green, P.J.2
  • 27
    • 0034366269 scopus 로고    scopus 로고
    • Bayesian inference in hidden Markov models through the reversible jump Markov chain Monte Carlo method
    • Robert, C. P., Rydén, T., Titterington, D. M.: Bayesian inference in hidden Markov models through the reversible jump Markov chain Monte Carlo method. J. R. Stat. Soc. B 62, 57-76 (2000).
    • (2000) J. R. Stat. Soc. B , vol.62 , pp. 57-76
    • Robert, C.P.1    Rydén, T.2    Titterington, D.M.3
  • 28
    • 0001974429 scopus 로고    scopus 로고
    • Markov chain concepts related to sampling algorithms
    • W. R. Gilks, S. Richardson, and D. J. Spiegelhalter (Eds.), London: Chapman & Hall
    • Roberts, G. O.: Markov chain concepts related to sampling algorithms. In: Gilks, W. R., Richardson, S., Spiegelhalter, D. J. (eds.) Markov Chain Monte Carlo in Practice, pp. 45-58. Chapman & Hall, London (1996).
    • (1996) Markov Chain Monte Carlo in Practice , pp. 45-58
    • Roberts, G.O.1
  • 29
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6, 461-464 (1978).
    • (1978) Ann. Stat. , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 30
    • 4444367133 scopus 로고    scopus 로고
    • Biclustering microarray data by Gibbs sampling
    • Sheng, Q., Moreau, Y., Moor, B. D.: Biclustering microarray data by Gibbs sampling. Bioinformatics 19, 196-205 (2003).
    • (2003) Bioinformatics , vol.19 , pp. 196-205
    • Sheng, Q.1    Moreau, Y.2    Moor, B.D.3
  • 31
    • 0002195443 scopus 로고    scopus 로고
    • Hepatitis B: a case study in MCMC methods
    • W. R. Gilks, S. Richardson, and D. J. Spiegelhalter (Eds.), London: Chapman & Hall
    • Spiegelhalter, D. J., Best, N. G., Gilks, W. R., Inskip, H.: Hepatitis B: a case study in MCMC methods. In: Gilks, W. R., Richardson, S., Spiegelhalter, D. J. (eds.) Markov Chain Monte Carlo in Practice, pp. 21-44. Chapman & Hall, London (1996).
    • (1996) Markov Chain Monte Carlo in Practice , pp. 21-44
    • Spiegelhalter, D.J.1    Best, N.G.2    Gilks, W.R.3    Inskip, H.4
  • 32
    • 0034374610 scopus 로고    scopus 로고
    • Bayesian analysis of mixture models with an unknown number of components- an alternative to reversible jump methods
    • Stephens, M.: Bayesian analysis of mixture models with an unknown number of components- an alternative to reversible jump methods. Ann. Stat. 28, 40-74 (2000).
    • (2000) Ann. Stat. , vol.28 , pp. 40-74
    • Stephens, M.1
  • 33
    • 0003714291 scopus 로고    scopus 로고
    • Clustering methods for the analysis of DNA microarray data
    • Technical report, Stanford University
    • Tibshirani, R., Hastie, T., Eisen, M., Ross, D., Botstein, D., Brown, P.: Clustering methods for the analysis of DNA microarray data. Technical report, Stanford University (1999).
    • (1999)
    • Tibshirani, R.1    Hastie, T.2    Eisen, M.3    Ross, D.4    Botstein, D.5    Brown, P.6
  • 34
    • 81955161464 scopus 로고    scopus 로고
    • A Bayesian approach to two-mode clustering
    • Technical report, Econometric Institute Report, Erasmus University Rotterdam
    • van Dijk, B., van Rosmalen, J., Paap, R.: A Bayesian approach to two-mode clustering. Technical report, Econometric Institute Report, Erasmus University Rotterdam (2009).
    • (2009)
    • van Dijk, B.1    van Rosmalen, J.2    Paap, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.