-
1
-
-
79951901827
-
-
L. Tong, T. Zhu, Z. Liu, Chem. Soc. Rev. 2011, 40, 1296.
-
(2011)
Chem. Soc. Rev.
, vol.40
, pp. 1296
-
-
Tong, L.1
Zhu, T.2
Liu, Z.3
-
3
-
-
0036324350
-
-
T. Vo-Dinh, L. R. Allain, D. L. Stokes, J. Raman Spectrosc. 2002, 33, 511.
-
(2002)
J. Raman Spectrosc.
, vol.33
, pp. 511
-
-
Vo-Dinh, T.1
Allain, L.R.2
Stokes, D.L.3
-
4
-
-
34047141247
-
-
K. Chen, M. Leona, T. Vo-Dinh, Sens. Rev. 2007, 27, 109.
-
(2007)
Sens. Rev.
, vol.27
, pp. 109
-
-
Chen, K.1
Leona, M.2
Vo-Dinh, T.3
-
5
-
-
47549086779
-
-
M.Fleischmann, P. J. Hendra, A. J. McQuillan, Chem. Phys. Lett. 1974, 26, 163.
-
(1974)
Chem. Phys. Lett.
, vol.26
, pp. 163
-
-
Fleischmann, M.1
Hendra, P.J.2
McQuillan, A.J.3
-
8
-
-
84858751842
-
-
D.Cialla, A. März, R. Böhme, F. Theli, K. Weber, M. Schmitt, J. Popp, Anal. Bioanal. Chem. 2012, 403, 27.
-
(2012)
J. Popp. Anal. Bioanal. Chem.
, vol.403
, pp. 27
-
-
Cialla, D.1
März, A.2
Böhme, R.3
Theli, F.4
Weber, K.5
Schmitt, M.6
-
9
-
-
0037161404
-
-
Y.Tian, K. Watanabe, X. Kong, J. Abe, T. Iyoda, Macromolecules 2002, 35, 3739.
-
(2002)
Macromolecules
, vol.35
, pp. 3739
-
-
Tian, Y.1
Watanabe, K.2
Kong, X.3
Abe, J.4
Iyoda, T.5
-
10
-
-
49149096347
-
-
J. Yoon, S. Y. Jung, B. Ahn, K. Heo, S. Jin, T. Iyoda, H. Yoshida, M. Ree, J. Phys. Chem. B 2008, 112, 8486.
-
(2008)
J. Phys. Chem. B
, vol.112
, pp. 8486
-
-
Yoon, J.1
Jung, S.Y.2
Ahn, B.3
Heo, K.4
Jin, S.5
Iyoda, T.6
Yoshida, H.7
Ree, M.8
-
12
-
-
67650403393
-
-
M. Komura, K. Watanabe, T. Iyoda, T. Yamada, H. Yoshida, Y. Iwasaki, Chem. Lett. 2009, 38, 408.
-
(2009)
Chem. Lett.
, vol.38
, pp. 408
-
-
Komura, M.1
Watanabe, K.2
Iyoda, T.3
Yamada, T.4
Yoshida, H.5
Iwasaki, Y.6
-
13
-
-
80053476251
-
-
S. Asaoka, T. Uekusa, H. Tokimori, M. Komura, T. Iyoda, T. Yamada, H. Yoshida, Macromolecules 2011, 44, 7645.
-
(2011)
Macromolecules
, vol.44
, pp. 7645
-
-
Asaoka, S.1
Uekusa, T.2
Tokimori, H.3
Komura, M.4
Iyoda, T.5
Yamada, T.6
Yoshida, H.7
-
14
-
-
79961085469
-
-
W. Zou, Y. Wang, Z. Wang, A. Zhou, J. Li, A. Chang, Q. Wang, M. Komura, K. Ito, T. Iyoda, Nanotechnology 2011, 22, 335301.
-
(2011)
Nanotechnology
, vol.22
, pp. 335301
-
-
Zou, W.1
Wang, Y.2
Wang, Z.3
Zhou, A.4
Li, J.5
Chang, A.6
Wang, Q.7
Komura, M.8
Ito, K.9
Iyoda, T.10
-
15
-
-
34250629770
-
-
S. Watanabe, R. Fujiwara, M. Hada, Y. Okazaki, T. Iyoda, Angew. Chem., Int. Ed. 2007, 46, 1120.
-
(2007)
Angew. Chem., Int. Ed.
, vol.46
, pp. 1120
-
-
Watanabe, S.1
Fujiwara, R.2
Hada, M.3
Okazaki, Y.4
Iyoda, T.5
-
16
-
-
34250649164
-
-
J. Li, K. Kamata, S. Watanabe, T. Iyoda, Adv. Mater. 2007, 19, 1267.
-
(2007)
Adv. Mater.
, vol.19
, pp. 1267
-
-
Li, J.1
Kamata, K.2
Watanabe, S.3
Iyoda, T.4
-
17
-
-
39449109513
-
-
J. Li, K. Kamata, T. Iyoda, Thin Solid Films 2008, 516, 2577.
-
(2008)
Thin Solid Films
, vol.516
, pp. 2577
-
-
Li, J.1
Kamata, K.2
Iyoda, T.3
-
18
-
-
47349104563
-
-
A. Chen, M. Komura, K. Kamata, T. Iyoda, Adv. Mater. 2008, 20, 763.
-
(2008)
Adv. Mater.
, vol.20
, pp. 763
-
-
Chen, A.1
Komura, M.2
Kamata, K.3
Iyoda, T.4
-
19
-
-
65349142733
-
-
R. Watanabe, T. Iyoda, K. Ito, Electrochemistry 2009, 77, 214.
-
(2009)
Electrochemistry
, vol.77
, pp. 214
-
-
Watanabe, R.1
Iyoda, T.2
Ito, K.3
-
20
-
-
84863798037
-
-
N. Yamashita, H. Komiyama, Y. Zhao, M. Komura, T. Iyoda, K. Nagai, Jpn. J. Appl. Phys. 2012, 51, 076704.
-
(2012)
Jpn. J. Appl. Phys.
, vol.51
, pp. 076704
-
-
Yamashita, N.1
Komiyama, H.2
Zhao, Y.3
Komura, M.4
Iyoda, T.5
Nagai, K.6
-
21
-
-
77956265627
-
-
Y. Nakamura, A. Murayama, R. Watanabe, T. Iyoda, M. Ichikawa, Nanotechnology 2010, 21, 095305.
-
(2010)
Nanotechnology
, vol.21
, pp. 095305
-
-
Nakamura, Y.1
Murayama, A.2
Watanabe, R.3
Iyoda, T.4
Ichikawa, M.5
-
22
-
-
33846050484
-
-
J. Lu, D. Chamberlin, D. A. Rider, M. Liu, I. Manners, T. P. Russell, Nanotechnology 2006, 17, 5792.
-
(2006)
Nanotechnology
, vol.17
, pp. 5792
-
-
Lu, J.1
Chamberlin, D.2
Rider, D.A.3
Liu, M.4
Manners, I.5
Russell, T.P.6
-
23
-
-
66749181172
-
-
Y. Wang, M. Becker, L. Wang, J. Liu, R. Scholz, J. Peng, U. Gösele, S. Christiansen, D. H. Kim, M. Steinhart, Nano Lett. 2009, 9, 2384.
-
(2009)
Nano Lett.
, vol.9
, pp. 2384
-
-
Wang, Y.1
Becker, M.2
Wang, L.3
Liu, J.4
Scholz, R.5
Peng, J.6
Gösele, U.7
Christiansen, S.8
Kim, D.H.9
Steinhart, M.10
-
24
-
-
80052998881
-
-
W. Lee, S. Y. Lee, R. M. Briber, O. Rabin, Adv. Funct. Mater. 2011, 21, 3424.
-
(2011)
Adv. Funct. Mater.
, vol.21
, pp. 3424
-
-
Lee, W.1
Lee, S.Y.2
Briber, R.M.3
Rabin, O.4
-
25
-
-
84856160720
-
-
W. J. Cho, Y. Kim, J. K. Kim, ACS Nano 2012, 6, 249.
-
(2012)
ACS Nano
, vol.6
, pp. 249
-
-
Cho, W.J.1
Kim, Y.2
Kim, J.K.3
-
26
-
-
84871767718
-
-
For example, when PEO454-b-PMA(Az)123 template film with 70 nm thickness, [HAuCl4] = 0.5M was employed as fixed factors and the doping time was changed from 10 s to 120min, the average gold particle size and the gap was changed from 22 ? 4 and 28 ? 7nm to 29 ? 4 and 23 ? 5 nm, respectively
-
For example, when PEO454-b-PMA(Az)123 template film with 70 nm thickness, [HAuCl4] = 0.5M was employed as fixed factors and the doping time was changed from 10 s to 120min, the average gold particle size and the gap was changed from 22 ? 4 and 28 ? 7nm to 29 ? 4 and 23 ? 5 nm, respectively.
-
-
-
-
27
-
-
42149091117
-
-
M. Suzuki, K. Nakajima, K. Kimura, T. Fukuoka, Y. Mori, Anal. Sci. 2007, 23, 829.
-
(2007)
Anal. Sci.
, vol.23
, pp. 829
-
-
Suzuki, M.1
Nakajima, K.2
Kimura, K.3
Fukuoka, T.4
Mori, Y.5
-
28
-
-
84871742920
-
-
Enhancement factor (EF) is defined as (ISERS/IRaman)(Nbulk/Nads), where ISERS and IRaman are the intensity of a sample on gold nanoparticle array and Si wafer, respectively. Nbulk and Nads are the number of molecules on Si wafer and gold nanoparticle array, respectively. We used the concentration of a sample solution instead of the number of molecules in this study
-
Enhancement factor (EF) is defined as (ISERS/IRaman)(Nbulk/Nads), where ISERS and IRaman are the intensity of a sample on gold nanoparticle array and Si wafer, respectively. Nbulk and Nads are the number of molecules on Si wafer and gold nanoparticle array, respectively. We used the concentration of a sample solution instead of the number of molecules in this study.
-
-
-
-
29
-
-
81755166535
-
-
R. Silva, A. V. Biradar, L. Fabris, T. Asefa, J. Phys. Chem. C 2011, 115, 22810.
-
(2011)
J. Phys. Chem. C
, vol.115
, pp. 22810
-
-
Silva, R.1
Biradar, A.V.2
Fabris, L.3
Asefa, T.4
-
30
-
-
84871761147
-
-
To estimate the surface area of gold nanoparticle, we assumed the gold nanoparticles are spherical segment in which diameter of base circles is 29 nm and a height of the segment is 5 nm
-
To estimate the surface area of gold nanoparticle, we assumed the gold nanoparticles are spherical segment in which diameter of base circles is 29 nm and a height of the segment is 5 nm.
-
-
-
-
31
-
-
84871723461
-
-
Nbulk and Nads used for correction were estimated from following equation; Nbulk = (mole of 4-Spy)/(surface area of Si wafer) Nads = (mole of 4-Spy)/(surface area of gold nanoparticles)
-
Nbulk and Nads used for correction were estimated from following equation; Nbulk = (mole of 4-Spy)/(surface area of Si wafer) Nads = (mole of 4-Spy)/(surface area of gold nanoparticles)
-
-
-
-
32
-
-
46749145767
-
-
A. Kaminska, O. Inya-Agha, R. J. Forster, T. E. Keyes, Phys. Chem. Chem. Phys. 2008, 10, 4172.
-
(2008)
Phys. Chem. Chem. Phys.
, vol.10
, pp. 4172
-
-
Kaminska, A.1
Inya-Agha, O.2
Forster, R.J.3
Keyes, T.E.4
-
33
-
-
84871764802
-
-
Supporting Information is available electronically on the CSJ-Journal Web site
-
Supporting Information is available electronically on the CSJ-Journal Web site, http://www.csj.jp/journals/chem-lett/index.html.
-
-
-
|