메뉴 건너뛰기




Volumn 27, Issue 2, 2013, Pages 567-579

Geomorphology Based Semi-Distributed Approach for Modelling Rainfall-Runoff Process

Author keywords

Artificial neural networks; Distributed approach; Geomorphology; Lump model; Rainfall runoff model

Indexed keywords

CATCHMENTS; FORECASTING; GEOMORPHOLOGY; LANDFORMS; NEURAL NETWORKS; RAIN; RAIN GAGES; WATERSHEDS;

EID: 84871714337     PISSN: 09204741     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11269-012-0202-2     Document Type: Article
Times cited : (7)

References (29)
  • 1
    • 4644274685 scopus 로고    scopus 로고
    • Runoff modeling through back propagation artificial neural network with variable rainfall-runoff data
    • Agarwal A, Singh RD (2004) Runoff modeling through back propagation artificial neural network with variable rainfall-runoff data. J Water Resour Manag 18(3): 285-300.
    • (2004) J Water Resour Manag , vol.18 , Issue.3 , pp. 285-300
    • Agarwal, A.1    Singh, R.D.2
  • 2
    • 34248202148 scopus 로고    scopus 로고
    • Artificial neural network model for synthetic streamflow generation
    • Ahmed JA, Sarma AK (2007) Artificial neural network model for synthetic streamflow generation. Water Resour Manag 21(6): 1015-1029.
    • (2007) Water Resour Manag , vol.21 , Issue.6 , pp. 1015-1029
    • Ahmed, J.A.1    Sarma, A.K.2
  • 4
    • 23044443211 scopus 로고    scopus 로고
    • Application of generalized regression neural networks to intermittent flow forecasting and estimation
    • Cigizoglu HK (2005) Application of generalized regression neural networks to intermittent flow forecasting and estimation. J Hydrol Eng 10(4): 336-341.
    • (2005) J Hydrol Eng , vol.10 , Issue.4 , pp. 336-341
    • Cigizoglu, H.K.1
  • 5
    • 31044455061 scopus 로고    scopus 로고
    • Integration of artificial neural networks with conceptual models in rainfall-runoff modeling
    • Chen J, Adams BJ (2006) Integration of artificial neural networks with conceptual models in rainfall-runoff modeling. J Hydrol 318(1-4): 232-249.
    • (2006) J Hydrol , vol.318 , Issue.1-4 , pp. 232-249
    • Chen, J.1    Adams, B.J.2
  • 6
    • 0032005702 scopus 로고    scopus 로고
    • An artificial neural network approach to rainfall-runoff modeling
    • Dawson DW, Wilby R (1998) An artificial neural network approach to rainfall-runoff modeling. Hydrol Sci J 43(1): 47-65.
    • (1998) Hydrol Sci J , vol.43 , Issue.1 , pp. 47-65
    • Dawson, D.W.1    Wilby, R.2
  • 7
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-runoff process
    • Hsu K, Gupta HV, Sorooshian S (1995) Artificial neural network modeling of the rainfall-runoff process. Water Resour Res 31(10): 2517-2530.
    • (1995) Water Resour Res , vol.31 , Issue.10 , pp. 2517-2530
    • Hsu, K.1    Gupta, H.V.2    Sorooshian, S.3
  • 8
    • 0037340658 scopus 로고    scopus 로고
    • Comparative analysis of event-based rainfall-runoff modeling techniques - deterministic, statistical, and artificial neural networks
    • Jain A, Prasad SKV (2003) Comparative analysis of event-based rainfall-runoff modeling techniques - deterministic, statistical, and artificial neural networks. J Hydrol Eng 8(2): 93-98.
    • (2003) J Hydrol Eng , vol.8 , Issue.2 , pp. 93-98
    • Jain, A.1    Prasad, S.K.V.2
  • 9
    • 1542287371 scopus 로고    scopus 로고
    • Identification of physical processes inherent in artificial neural network rainfall runoff models
    • Jain A, Sudheer KP, Srinivasulu S (2004) Identification of physical processes inherent in artificial neural network rainfall runoff models. Hydrol Process 118: 571-581.
    • (2004) Hydrol Process , vol.118 , pp. 571-581
    • Jain, A.1    Sudheer, K.P.2    Srinivasulu, S.3
  • 10
    • 2442639370 scopus 로고    scopus 로고
    • Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded genetic algorithms and artificial neural network techniques
    • doi:10.1029/2003WR002355
    • Jain A, Srinivasulu S (2004) Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded genetic algorithms and artificial neural network techniques. Water Resour Res 40(4): W04302. doi: 10. 1029/2003WR002355.
    • (2004) Water Resour Res , vol.40 , Issue.4
    • Jain, A.1    Srinivasulu, S.2
  • 11
    • 34548425056 scopus 로고    scopus 로고
    • Comparison of different ANN techniques in river flow prediction
    • Kisi O, Cigizoglu H (2007) Comparison of different ANN techniques in river flow prediction. Civ Eng Environ Syst 24(3): 211-231.
    • (2007) Civ Eng Environ Syst , vol.24 , Issue.3 , pp. 211-231
    • Kisi, O.1    Cigizoglu, H.2
  • 12
    • 0022266291 scopus 로고
    • A comparison of rainfall-runoff modeling techniques on small upland catchments
    • Loague KM, Freeze RA (1985) A comparison of rainfall-runoff modeling techniques on small upland catchments. Water Resour Res 21(2): 229-248.
    • (1985) Water Resour Res , vol.21 , Issue.2 , pp. 229-248
    • Loague, K.M.1    Freeze, R.A.2
  • 13
    • 0029413502 scopus 로고
    • Neural nets for modeling rainfall-runoff transformations
    • Lorrai M, Sechi GM (1995) Neural nets for modeling rainfall-runoff transformations. Water Resour Manage 9: 299-313.
    • (1995) Water Resour Manage , vol.9 , pp. 299-313
    • Lorrai, M.1    Sechi, G.M.2
  • 14
    • 0001737232 scopus 로고
    • Geomorphometric parameters: a review and evaluation
    • Mark DM (1975) Geomorphometric parameters: a review and evaluation. Geogr Ann 57(3/4): 165-177.
    • (1975) Geogr Ann , vol.57 , Issue.3-4 , pp. 165-177
    • Mark, D.M.1
  • 15
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neural networks as rainfall runoff models
    • Minns AW, Hall MJ (1996) Artificial neural networks as rainfall runoff models. Hydrol Sci J 41(3): 399-417.
    • (1996) Hydrol Sci J , vol.41 , Issue.3 , pp. 399-417
    • Minns, A.W.1    Hall, M.J.2
  • 16
    • 70350337875 scopus 로고    scopus 로고
    • A multivariate ANN-Wavelet approach for rainfall-runoff modeling
    • Nourani V, Mehdi K, Mano A (2009) A multivariate ANN-Wavelet approach for rainfall-runoff modeling. J Water Resour Manag 23(14): 2877-2894.
    • (2009) J Water Resour Manag , vol.23 , Issue.14 , pp. 2877-2894
    • Nourani, V.1    Mehdi, K.2    Mano, A.3
  • 17
    • 0036899543 scopus 로고    scopus 로고
    • Artificial neural networks for daily rainfall-runoff modeling
    • Rajurkar MP, Kothyari UC, Chaube UC (2002) Artificial neural networks for daily rainfall-runoff modeling. Hydrol Sci J 47(6): 865-876.
    • (2002) Hydrol Sci J , vol.47 , Issue.6 , pp. 865-876
    • Rajurkar, M.P.1    Kothyari, U.C.2    Chaube, U.C.3
  • 18
    • 0347135926 scopus 로고    scopus 로고
    • Modeling of the daily rainfall-runoff relationship with artificial neural network
    • Rajurkar MP, Kothyari UC, Chaube UC (2004) Modeling of the daily rainfall-runoff relationship with artificial neural network. J Hydrol 285(1-4): 96-113.
    • (2004) J Hydrol , vol.285 , Issue.1-4 , pp. 96-113
    • Rajurkar, M.P.1    Kothyari, U.C.2    Chaube, U.C.3
  • 19
    • 14944371133 scopus 로고    scopus 로고
    • Rainfall-runoff model using an artificial neural network approach
    • Riad S, Mania J, Bouchaou L, Najjar Y (2004) Rainfall-runoff model using an artificial neural network approach. Math Comput Model 40(7-8): 839-846.
    • (2004) Math Comput Model , vol.40 , Issue.7-8 , pp. 839-846
    • Riad, S.1    Mania, J.2    Bouchaou, L.3    Najjar, Y.4
  • 20
    • 0033535432 scopus 로고    scopus 로고
    • A non-linear rainfall-runoff model using an artificial neural network
    • Sajikumar N, Thandaveswara BS (1999) A non-linear rainfall-runoff model using an artificial neural network. J Hydrol 216: 32-55.
    • (1999) J Hydrol , vol.216 , pp. 32-55
    • Sajikumar, N.1    Thandaveswara, B.S.2
  • 21
    • 84863336054 scopus 로고    scopus 로고
    • Geomorphology-based time-lagged recurrent neural networks for runoff forecasting
    • Saharia M, Bhattacharjya RK (2012) Geomorphology-based time-lagged recurrent neural networks for runoff forecasting. KSCE J Civ Eng 16(5): 862-869.
    • (2012) KSCE J Civ Eng , vol.16 , Issue.5 , pp. 862-869
    • Saharia, M.1    Bhattacharjya, R.K.2
  • 22
    • 0342506462 scopus 로고    scopus 로고
    • Application of a neural network technique to rainfall-runoff modeling
    • Shamseldin AY (1997) Application of a neural network technique to rainfall-runoff modeling. J Hydrol 199: 272-294.
    • (1997) J Hydrol , vol.199 , pp. 272-294
    • Shamseldin, A.Y.1
  • 23
    • 33644636765 scopus 로고    scopus 로고
    • A comparative analysis of training methods for artificial neural network rainfall-runoff models
    • Srinivasulu S, Jain A (2006) A comparative analysis of training methods for artificial neural network rainfall-runoff models. Appl Soft Comput 6(3): 295-306.
    • (2006) Appl Soft Comput , vol.6 , Issue.3 , pp. 295-306
    • Srinivasulu, S.1    Jain, A.2
  • 24
    • 1642333234 scopus 로고    scopus 로고
    • Explaining the internal behavior of artificial neural network river flow models
    • Sudheer KP, Jain A (2004) Explaining the internal behavior of artificial neural network river flow models. Hydrol Process 118(4): 833-844.
    • (2004) Hydrol Process , vol.118 , Issue.4 , pp. 833-844
    • Sudheer, K.P.1    Jain, A.2
  • 25
    • 0032804627 scopus 로고    scopus 로고
    • A genetic programming approach to rainfall-runoff modelling
    • Savic DA, Walters GA, Davidson JW (1999) A genetic programming approach to rainfall-runoff modelling. Water Resour Manag 13(3): 219-231.
    • (1999) Water Resour Manag , vol.13 , Issue.3 , pp. 219-231
    • Savic, D.A.1    Walters, G.A.2    Davidson, J.W.3
  • 26
    • 84871720209 scopus 로고    scopus 로고
    • Comparative analysis of training methods and different data for the rainfall-runoff predication using artificial neural networks
    • Solaimani K, Darvari Z (2008) Comparative analysis of training methods and different data for the rainfall-runoff predication using artificial neural networks. Res J Environ Sci 2(5): 353-365.
    • (2008) Res J Environ Sci , vol.2 , Issue.5 , pp. 353-365
    • Solaimani, K.1    Darvari, Z.2
  • 27
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural networks
    • Tokar AS, Johnson A (1999) Rainfall-runoff modeling using artificial neural networks. J Hydrol Eng 4(3): 232-239.
    • (1999) J Hydrol Eng , vol.4 , Issue.3 , pp. 232-239
    • Tokar, A.S.1    Johnson, A.2
  • 28
    • 0037388711 scopus 로고    scopus 로고
    • Detection of conceptual model rainfall-runoff processes inside an artificial neural network
    • Wilby RL, Abrahart RJ, Dawson CW (2003) Detection of conceptual model rainfall-runoff processes inside an artificial neural network. Hydrol Sci J 48(2): 163-181.
    • (2003) Hydrol Sci J , vol.48 , Issue.2 , pp. 163-181
    • Wilby, R.L.1    Abrahart, R.J.2    Dawson, C.W.3
  • 29
    • 0037466126 scopus 로고    scopus 로고
    • Geomorphology-based artificial neural networks (GANNs) for estimation of direct runoff over watersheds
    • Zhang B, Govindaraju RS (2003) Geomorphology-based artificial neural networks (GANNs) for estimation of direct runoff over watersheds. J Hydrol 273(1-4): 18-34.
    • (2003) J Hydrol , vol.273 , Issue.1-4 , pp. 18-34
    • Zhang, B.1    Govindaraju, R.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.