메뉴 건너뛰기




Volumn 23, Issue 8, 2012, Pages 649-662

Spatial modeling for risk assessment of extreme values from environmental time series: A Bayesian nonparametric approach

Author keywords

Dirichlet process mixture model; Gaussian process; Non homogeneous Poisson process; Rainfall precipitation; Spatial Dirichlet process

Indexed keywords

BAYESIAN ANALYSIS; ENVIRONMENTAL MODELING; ENVIRONMENTAL MONITORING; EXTREME EVENT; GAUSSIAN METHOD; MARKOV CHAIN; MONTE CARLO ANALYSIS; NUMERICAL MODEL; PRECIPITATION (CLIMATOLOGY); RISK ASSESSMENT; SPATIAL ANALYSIS; STATISTICAL DISTRIBUTION; THRESHOLD; TIME SERIES ANALYSIS;

EID: 84871680049     PISSN: 11804009     EISSN: 1099095X     Source Type: Journal    
DOI: 10.1002/env.2177     Document Type: Article
Times cited : (37)

References (36)
  • 4
    • 0001075431 scopus 로고
    • Statistical inference using extreme order statistics
    • DOI: 10.1214/aos/1176343003.
    • Pickands J. 1975. Statistical inference using extreme order statistics. The Annals of Statistics 3: 119-131, DOI: 10.1214/aos/1176343003.
    • (1975) The Annals of Statistics , vol.3 , pp. 119-131
    • Pickands, J.1
  • 6
    • 0030560555 scopus 로고    scopus 로고
    • Bayesian methods in extreme value modelling: a review and new developments
    • DOI: 10.2307/1403426.
    • Coles SG, Powell EA. 1996. Bayesian methods in extreme value modelling: a review and new developments. International Statistical Review 64: 119-136, DOI: 10.2307/1403426.
    • (1996) International Statistical Review , vol.64 , pp. 119-136
    • Coles, S.G.1    Powell, E.A.2
  • 7
    • 26444468064 scopus 로고    scopus 로고
    • Bayesian inference for extremes: accounting for the three extremal types
    • DOI: 10.1007/s10687-004-3479-6.
    • Stephenson A, Tawn JA. 2004. Bayesian inference for extremes: accounting for the three extremal types. Extremes 7:291-307, DOI: 10.1007/s10687-004-3479-6.
    • (2004) Extremes , vol.7 , pp. 291-307
    • Stephenson, A.1    Tawn, J.A.2
  • 8
    • 78650300778 scopus 로고    scopus 로고
    • Bayesian nonparametrics for heavy tailed distribution. Application to food risk assessment
    • DOI: 10.1214/08-BA314.
    • Tressou J. 2008. Bayesian nonparametrics for heavy tailed distribution. Application to food risk assessment. Bayesian Analysis 3: 367-392, DOI: 10.1214/08-BA314.
    • (2008) Bayesian Analysis , vol.3 , pp. 367-392
    • Tressou, J.1
  • 9
    • 34548020772 scopus 로고    scopus 로고
    • Time-varying models for extreme values
    • DOI: 10.1007/s10651-007-0014-3.
    • Huerta G, Sansó B. 2007. Time-varying models for extreme values. Environmental and Ecological Statistics 14: 285-299, DOI: 10.1007/s10651-007-0014-3.
    • (2007) Environmental and Ecological Statistics , vol.14 , pp. 285-299
    • Huerta, G.1    Sansó, B.2
  • 10
    • 34548761070 scopus 로고    scopus 로고
    • Bayesian spatial modeling of extreme precipitation return levels
    • DOI: 10.1198/016214506000000780.
    • Cooley D, Nychka D, Naveau P. 2007. Bayesian spatial modeling of extreme precipitation return levels. Journal of the American Statistical Association 102: 824-840, DOI: 10.1198/016214506000000780.
    • (2007) Journal of the American Statistical Association , vol.102 , pp. 824-840
    • Cooley, D.1    Nychka, D.2    Naveau, P.3
  • 11
    • 67651231033 scopus 로고    scopus 로고
    • Hierarchical modeling for extreme values observed over space and time
    • DOI: 10.1007/s10651-007-0078-0.
    • Sang H, Gelfand AE. 2009. Hierarchical modeling for extreme values observed over space and time. Environmental and Ecological Statistics 16:407-426, DOI: 10.1007/s10651-007-0078-0.
    • (2009) Environmental and Ecological Statistics , vol.16 , pp. 407-426
    • Sang, H.1    Gelfand, A.E.2
  • 13
    • 84874191268 scopus 로고    scopus 로고
    • Nonparametric spatial models for extremes: application to extreme temperature data
    • DOI: 10.1007/s10687-012-0154-1., (2012).
    • Fuentes M, Henry J, Reich BJ. 2012. Nonparametric spatial models for extremes: application to extreme temperature data. Extremes 15 (2012)., DOI: 10.1007/s10687-012-0154-1.
    • (2012) Extremes , vol.15
    • Fuentes, M.1    Henry, J.2    Reich, B.J.3
  • 14
    • 85052921916 scopus 로고    scopus 로고
    • A hierarchical max-stable spatial model for extreme precipitation
    • Forthcoming.
    • Reich BJ, Shaby BA. 2013. A hierarchical max-stable spatial model for extreme precipitation. Annals of Applied Statistics, Forthcoming.
    • (2013) Annals of Applied Statistics
    • Reich, B.J.1    Shaby, B.A.2
  • 15
    • 0002276858 scopus 로고
    • The two-dimensional Poisson process and extremal processes
    • DOI: 10.2307/3212238.
    • Pickands J. 1971. The two-dimensional Poisson process and extremal processes. Journal of Applied Probability 8: 745-756, DOI: 10.2307/3212238.
    • (1971) Journal of Applied Probability , vol.8 , pp. 745-756
    • Pickands, J.1
  • 16
    • 84972496066 scopus 로고
    • Extreme value analysis of environmental time series: an application to trend detection in ground-level ozone
    • DOI: 10.1214/ss/1177012400.
    • Smith RL. 1989. Extreme value analysis of environmental time series: an application to trend detection in ground-level ozone. Statistical Science 4:367-393, DOI: 10.1214/ss/1177012400.
    • (1989) Statistical Science , vol.4 , pp. 367-393
    • Smith, R.L.1
  • 17
    • 0039607949 scopus 로고    scopus 로고
    • A Bayesian analysis of extreme rainfall data
    • DOI: 10.2307/2986068.
    • Coles SG, Tawn JA. 1996. A Bayesian analysis of extreme rainfall data. Applied Statistics 45:463-478, DOI: 10.2307/2986068.
    • (1996) Applied Statistics , vol.45 , pp. 463-478
    • Coles, S.G.1    Tawn, J.A.2
  • 18
    • 80055070051 scopus 로고    scopus 로고
    • Spatial hierarchical modeling of precipitation extremes from a regional climate model
    • DOI: 10.1007/s13253-010-0023-9.
    • Cooley D, Sain SR. 2010. Spatial hierarchical modeling of precipitation extremes from a regional climate model. Journal of Agricultural, Biological, and Environmental Statistics 15: 381-402, DOI: 10.1007/s13253-010-0023-9.
    • (2010) Journal of Agricultural, Biological, and Environmental Statistics , vol.15 , pp. 381-402
    • Cooley, D.1    Sain, S.R.2
  • 19
    • 84871706581 scopus 로고    scopus 로고
    • A nonparametric mixture modeling framework for extreme value analysis, Technical Report UCSC-SOE-11-26, University of California, Santa Cruz. Available from
    • Wang Z, Rodríguez A, Kottas A. 2011. A nonparametric mixture modeling framework for extreme value analysis, Technical Report UCSC-SOE-11-26, University of California, Santa Cruz. Available from http://www.soe.ucsc.edu/research/technical-reports/ucsc-soe-11-26.
    • (2011)
    • Wang, Z.1    Rodríguez, A.2    Kottas, A.3
  • 21
    • 34250186433 scopus 로고    scopus 로고
    • Bayesian mixture modeling for spatial Poisson process intensities, with applications to extreme value analysis
    • DOI: 10.1016/j.jspi.2006.05.022.
    • Kottas A, Sansó B. 2007. Bayesian mixture modeling for spatial Poisson process intensities, with applications to extreme value analysis. Jounal of Statistical Planning and Inference 137: 3151-3163, DOI: 10.1016/j.jspi.2006.05.022.
    • (2007) Jounal of Statistical Planning and Inference , vol.137 , pp. 3151-3163
    • Kottas, A.1    Sansó, B.2
  • 22
    • 84865762723 scopus 로고    scopus 로고
    • Mixture modeling for marked Poisson processes
    • DOI: 10.1214/12-BA711.
    • Taddy MA, Kottas A. 2012. Mixture modeling for marked Poisson processes. Bayesian Analysis 7: 335-362, DOI: 10.1214/12-BA711.
    • (2012) Bayesian Analysis , vol.7 , pp. 335-362
    • Taddy, M.A.1    Kottas, A.2
  • 23
    • 0001120413 scopus 로고
    • A Bayesian analysis of some nonparametric problems
    • DOI: 10.1214/aos/1176342360.
    • Ferguson TS. 1973. A Bayesian analysis of some nonparametric problems. The Annals of Statistics 1:209-230, DOI: 10.1214/aos/1176342360.
    • (1973) The Annals of Statistics , vol.1 , pp. 209-230
    • Ferguson, T.S.1
  • 24
    • 0000720609 scopus 로고
    • A constructive definition of Dirichlet priors
    • Sethuraman J. 1994. A constructive definition of Dirichlet priors. Statistica Sinica 4:639-650.
    • (1994) Statistica Sinica , vol.4 , pp. 639-650
    • Sethuraman, J.1
  • 25
    • 84950937290 scopus 로고
    • Bayesian density estimation and inference using mixtures
    • DOI:10.1080/01621459.1995.10476550.
    • Escobar MD, West M. 1995. Bayesian density estimation and inference using mixtures. Journal of the American Statistical Association 90:577-588, DOI:10.1080/01621459.1995.10476550.
    • (1995) Journal of the American Statistical Association , vol.90 , pp. 577-588
    • Escobar, M.D.1    West, M.2
  • 26
    • 24644441776 scopus 로고    scopus 로고
    • Bayesian nonparametric spatial modeling with Dirichlet process mixing
    • DOI: 10.1198/016214504000002078.
    • Gelfand AE, Kottas AE, MacEachern SN. 2005. Bayesian nonparametric spatial modeling with Dirichlet process mixing. Journal of the American Statistical Association 100:1021-1035, DOI: 10.1198/016214504000002078.
    • (2005) Journal of the American Statistical Association , vol.100 , pp. 1021-1035
    • Gelfand, A.E.1    Kottas, A.E.2    MacEachern, S.N.3
  • 27
    • 84871696129 scopus 로고    scopus 로고
    • Dependent Dirichlet processes. Technical Report Technical Report, Department of Statistics, The Ohio State University.
    • MacEachern SN. 2000. Dependent Dirichlet processes. Technical Report Technical Report, Department of Statistics, The Ohio State University.
    • (2000)
    • MacEachern, S.N.1
  • 28
    • 33747046152 scopus 로고    scopus 로고
    • Smoothness properties and gradient analysis under spatial Dirichlet process models
    • DOI: 10.1007/s11009-006-8547-8.
    • Guindani M, Gelfand AE. 2006. Smoothness properties and gradient analysis under spatial Dirichlet process models. Methodology and Computing in Applied Probability 8:159-189, DOI: 10.1007/s11009-006-8547-8.
    • (2006) Methodology and Computing in Applied Probability , vol.8 , pp. 159-189
    • Guindani, M.1    Gelfand, A.E.2
  • 29
    • 41149092479 scopus 로고    scopus 로고
    • Modeling disease incidence data with spatial and spatio-temporal Dirichlet process mixtures
    • DOI: 10.1002/bimj.200610375.
    • Kottas A, Duan JA, Gelfand AE. 2008. Modeling disease incidence data with spatial and spatio-temporal Dirichlet process mixtures. Biometrical Journal 50: 29-42, DOI: 10.1002/bimj.200610375.
    • (2008) Biometrical Journal , vol.50 , pp. 29-42
    • Kottas, A.1    Duan, J.A.2    Gelfand, A.E.3
  • 30
    • 61749097176 scopus 로고    scopus 로고
    • Bayesian dynamic density estimation
    • DOI: 10.1214/08-BA313.
    • Rodriguez A, ter Horst E. 2008. Bayesian dynamic density estimation. Bayesian Analysis 3: 339-366, DOI: 10.1214/08-BA313.
    • (2008) Bayesian Analysis , vol.3 , pp. 339-366
    • Rodriguez, A.1    ter Horst, E.2
  • 31
    • 1842816362 scopus 로고    scopus 로고
    • Gibbs sampling methods for stick-breaking priors
    • DOI:10.1198/016214501750332758.
    • Ishwaran H, James LF. 2001. Gibbs sampling methods for stick-breaking priors. Journal of the American Statistical Association 96: 161-173, DOI:10.1198/016214501750332758.
    • (2001) Journal of the American Statistical Association , vol.96 , pp. 161-173
    • Ishwaran, H.1    James, L.F.2
  • 32
    • 0001677650 scopus 로고    scopus 로고
    • Markov chain Monte Carlo in approximate Dirichlet and Beta two-parameter process hierarchical models
    • DOI: 10.1093/biomet/87.2.371.
    • Ishwaran H, Zarepour M. 2000. Markov chain Monte Carlo in approximate Dirichlet and Beta two-parameter process hierarchical models. Biometrika 87:371-390, DOI: 10.1093/biomet/87.2.371.
    • (2000) Biometrika , vol.87 , pp. 371-390
    • Ishwaran, H.1    Zarepour, M.2
  • 33
    • 13844266046 scopus 로고    scopus 로고
    • Gridded area-averaged daily precipitation via conditional interpolation
    • DOI: 10.1175/JCLI3246.1.
    • Hewitson BC, Crane RG. 2005. Gridded area-averaged daily precipitation via conditional interpolation. Journal of Climate 18: 41-57, DOI: 10.1175/JCLI3246.1.
    • (2005) Journal of Climate , vol.18 , pp. 41-57
    • Hewitson, B.C.1    Crane, R.G.2
  • 34
    • 78649420241 scopus 로고    scopus 로고
    • Posterior simulation in countable mixture models for large datasets
    • DOI: 10.1198/jasa.2010.tm09340.
    • Guha S. 2010. Posterior simulation in countable mixture models for large datasets. Journal of the American Statistical Association 105: 775-786, DOI: 10.1198/jasa.2010.tm09340.
    • (2010) Journal of the American Statistical Association , vol.105 , pp. 775-786
    • Guha, S.1
  • 35
    • 0033481108 scopus 로고    scopus 로고
    • Gibbs sampling for Bayesian non-conjugate and hierarchical models by using auxiliary variables
    • DOI: 10.1111/1467-9868.00179.
    • Damien P, Wakefield J, Walker S. 1999. Gibbs sampling for Bayesian non-conjugate and hierarchical models by using auxiliary variables. Journal of the Royal Statistical Society, Series B 61:331-344, DOI: 10.1111/1467-9868.00179.
    • (1999) Journal of the Royal Statistical Society, Series B , vol.61 , pp. 331-344
    • Damien, P.1    Wakefield, J.2    Walker, S.3
  • 36
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences (with discussion)
    • DOI: 10.1214/ss/1177011136.
    • Gelman A, Rubin DB. 1992. Inference from iterative simulation using multiple sequences (with discussion). Statistical Science 7: 457-511, DOI: 10.1214/ss/1177011136.
    • (1992) Statistical Science , vol.7 , pp. 457-511
    • Gelman, A.1    Rubin, D.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.