-
4
-
-
0001075431
-
Statistical inference using extreme order statistics
-
DOI: 10.1214/aos/1176343003.
-
Pickands J. 1975. Statistical inference using extreme order statistics. The Annals of Statistics 3: 119-131, DOI: 10.1214/aos/1176343003.
-
(1975)
The Annals of Statistics
, vol.3
, pp. 119-131
-
-
Pickands, J.1
-
6
-
-
0030560555
-
Bayesian methods in extreme value modelling: a review and new developments
-
DOI: 10.2307/1403426.
-
Coles SG, Powell EA. 1996. Bayesian methods in extreme value modelling: a review and new developments. International Statistical Review 64: 119-136, DOI: 10.2307/1403426.
-
(1996)
International Statistical Review
, vol.64
, pp. 119-136
-
-
Coles, S.G.1
Powell, E.A.2
-
7
-
-
26444468064
-
Bayesian inference for extremes: accounting for the three extremal types
-
DOI: 10.1007/s10687-004-3479-6.
-
Stephenson A, Tawn JA. 2004. Bayesian inference for extremes: accounting for the three extremal types. Extremes 7:291-307, DOI: 10.1007/s10687-004-3479-6.
-
(2004)
Extremes
, vol.7
, pp. 291-307
-
-
Stephenson, A.1
Tawn, J.A.2
-
8
-
-
78650300778
-
Bayesian nonparametrics for heavy tailed distribution. Application to food risk assessment
-
DOI: 10.1214/08-BA314.
-
Tressou J. 2008. Bayesian nonparametrics for heavy tailed distribution. Application to food risk assessment. Bayesian Analysis 3: 367-392, DOI: 10.1214/08-BA314.
-
(2008)
Bayesian Analysis
, vol.3
, pp. 367-392
-
-
Tressou, J.1
-
9
-
-
34548020772
-
Time-varying models for extreme values
-
DOI: 10.1007/s10651-007-0014-3.
-
Huerta G, Sansó B. 2007. Time-varying models for extreme values. Environmental and Ecological Statistics 14: 285-299, DOI: 10.1007/s10651-007-0014-3.
-
(2007)
Environmental and Ecological Statistics
, vol.14
, pp. 285-299
-
-
Huerta, G.1
Sansó, B.2
-
10
-
-
34548761070
-
Bayesian spatial modeling of extreme precipitation return levels
-
DOI: 10.1198/016214506000000780.
-
Cooley D, Nychka D, Naveau P. 2007. Bayesian spatial modeling of extreme precipitation return levels. Journal of the American Statistical Association 102: 824-840, DOI: 10.1198/016214506000000780.
-
(2007)
Journal of the American Statistical Association
, vol.102
, pp. 824-840
-
-
Cooley, D.1
Nychka, D.2
Naveau, P.3
-
11
-
-
67651231033
-
Hierarchical modeling for extreme values observed over space and time
-
DOI: 10.1007/s10651-007-0078-0.
-
Sang H, Gelfand AE. 2009. Hierarchical modeling for extreme values observed over space and time. Environmental and Ecological Statistics 16:407-426, DOI: 10.1007/s10651-007-0078-0.
-
(2009)
Environmental and Ecological Statistics
, vol.16
, pp. 407-426
-
-
Sang, H.1
Gelfand, A.E.2
-
12
-
-
77951765155
-
Continuous spatial process models for spatial extreme values
-
DOI: 10.1007/s13253-009-0010-1.
-
Sang H, Gelfand AE. 2010. Continuous spatial process models for spatial extreme values. Journal of Agricultural, Biological, and Environmental Statistics 15: 49-65, DOI: 10.1007/s13253-009-0010-1.
-
(2010)
Journal of Agricultural, Biological, and Environmental Statistics
, vol.15
, pp. 49-65
-
-
Sang, H.1
Gelfand, A.E.2
-
13
-
-
84874191268
-
Nonparametric spatial models for extremes: application to extreme temperature data
-
DOI: 10.1007/s10687-012-0154-1., (2012).
-
Fuentes M, Henry J, Reich BJ. 2012. Nonparametric spatial models for extremes: application to extreme temperature data. Extremes 15 (2012)., DOI: 10.1007/s10687-012-0154-1.
-
(2012)
Extremes
, vol.15
-
-
Fuentes, M.1
Henry, J.2
Reich, B.J.3
-
14
-
-
85052921916
-
A hierarchical max-stable spatial model for extreme precipitation
-
Forthcoming.
-
Reich BJ, Shaby BA. 2013. A hierarchical max-stable spatial model for extreme precipitation. Annals of Applied Statistics, Forthcoming.
-
(2013)
Annals of Applied Statistics
-
-
Reich, B.J.1
Shaby, B.A.2
-
15
-
-
0002276858
-
The two-dimensional Poisson process and extremal processes
-
DOI: 10.2307/3212238.
-
Pickands J. 1971. The two-dimensional Poisson process and extremal processes. Journal of Applied Probability 8: 745-756, DOI: 10.2307/3212238.
-
(1971)
Journal of Applied Probability
, vol.8
, pp. 745-756
-
-
Pickands, J.1
-
16
-
-
84972496066
-
Extreme value analysis of environmental time series: an application to trend detection in ground-level ozone
-
DOI: 10.1214/ss/1177012400.
-
Smith RL. 1989. Extreme value analysis of environmental time series: an application to trend detection in ground-level ozone. Statistical Science 4:367-393, DOI: 10.1214/ss/1177012400.
-
(1989)
Statistical Science
, vol.4
, pp. 367-393
-
-
Smith, R.L.1
-
17
-
-
0039607949
-
A Bayesian analysis of extreme rainfall data
-
DOI: 10.2307/2986068.
-
Coles SG, Tawn JA. 1996. A Bayesian analysis of extreme rainfall data. Applied Statistics 45:463-478, DOI: 10.2307/2986068.
-
(1996)
Applied Statistics
, vol.45
, pp. 463-478
-
-
Coles, S.G.1
Tawn, J.A.2
-
18
-
-
80055070051
-
Spatial hierarchical modeling of precipitation extremes from a regional climate model
-
DOI: 10.1007/s13253-010-0023-9.
-
Cooley D, Sain SR. 2010. Spatial hierarchical modeling of precipitation extremes from a regional climate model. Journal of Agricultural, Biological, and Environmental Statistics 15: 381-402, DOI: 10.1007/s13253-010-0023-9.
-
(2010)
Journal of Agricultural, Biological, and Environmental Statistics
, vol.15
, pp. 381-402
-
-
Cooley, D.1
Sain, S.R.2
-
19
-
-
84871706581
-
-
A nonparametric mixture modeling framework for extreme value analysis, Technical Report UCSC-SOE-11-26, University of California, Santa Cruz. Available from
-
Wang Z, Rodríguez A, Kottas A. 2011. A nonparametric mixture modeling framework for extreme value analysis, Technical Report UCSC-SOE-11-26, University of California, Santa Cruz. Available from http://www.soe.ucsc.edu/research/technical-reports/ucsc-soe-11-26.
-
(2011)
-
-
Wang, Z.1
Rodríguez, A.2
Kottas, A.3
-
21
-
-
34250186433
-
Bayesian mixture modeling for spatial Poisson process intensities, with applications to extreme value analysis
-
DOI: 10.1016/j.jspi.2006.05.022.
-
Kottas A, Sansó B. 2007. Bayesian mixture modeling for spatial Poisson process intensities, with applications to extreme value analysis. Jounal of Statistical Planning and Inference 137: 3151-3163, DOI: 10.1016/j.jspi.2006.05.022.
-
(2007)
Jounal of Statistical Planning and Inference
, vol.137
, pp. 3151-3163
-
-
Kottas, A.1
Sansó, B.2
-
22
-
-
84865762723
-
Mixture modeling for marked Poisson processes
-
DOI: 10.1214/12-BA711.
-
Taddy MA, Kottas A. 2012. Mixture modeling for marked Poisson processes. Bayesian Analysis 7: 335-362, DOI: 10.1214/12-BA711.
-
(2012)
Bayesian Analysis
, vol.7
, pp. 335-362
-
-
Taddy, M.A.1
Kottas, A.2
-
23
-
-
0001120413
-
A Bayesian analysis of some nonparametric problems
-
DOI: 10.1214/aos/1176342360.
-
Ferguson TS. 1973. A Bayesian analysis of some nonparametric problems. The Annals of Statistics 1:209-230, DOI: 10.1214/aos/1176342360.
-
(1973)
The Annals of Statistics
, vol.1
, pp. 209-230
-
-
Ferguson, T.S.1
-
24
-
-
0000720609
-
A constructive definition of Dirichlet priors
-
Sethuraman J. 1994. A constructive definition of Dirichlet priors. Statistica Sinica 4:639-650.
-
(1994)
Statistica Sinica
, vol.4
, pp. 639-650
-
-
Sethuraman, J.1
-
25
-
-
84950937290
-
Bayesian density estimation and inference using mixtures
-
DOI:10.1080/01621459.1995.10476550.
-
Escobar MD, West M. 1995. Bayesian density estimation and inference using mixtures. Journal of the American Statistical Association 90:577-588, DOI:10.1080/01621459.1995.10476550.
-
(1995)
Journal of the American Statistical Association
, vol.90
, pp. 577-588
-
-
Escobar, M.D.1
West, M.2
-
27
-
-
84871696129
-
-
Dependent Dirichlet processes. Technical Report Technical Report, Department of Statistics, The Ohio State University.
-
MacEachern SN. 2000. Dependent Dirichlet processes. Technical Report Technical Report, Department of Statistics, The Ohio State University.
-
(2000)
-
-
MacEachern, S.N.1
-
28
-
-
33747046152
-
Smoothness properties and gradient analysis under spatial Dirichlet process models
-
DOI: 10.1007/s11009-006-8547-8.
-
Guindani M, Gelfand AE. 2006. Smoothness properties and gradient analysis under spatial Dirichlet process models. Methodology and Computing in Applied Probability 8:159-189, DOI: 10.1007/s11009-006-8547-8.
-
(2006)
Methodology and Computing in Applied Probability
, vol.8
, pp. 159-189
-
-
Guindani, M.1
Gelfand, A.E.2
-
29
-
-
41149092479
-
Modeling disease incidence data with spatial and spatio-temporal Dirichlet process mixtures
-
DOI: 10.1002/bimj.200610375.
-
Kottas A, Duan JA, Gelfand AE. 2008. Modeling disease incidence data with spatial and spatio-temporal Dirichlet process mixtures. Biometrical Journal 50: 29-42, DOI: 10.1002/bimj.200610375.
-
(2008)
Biometrical Journal
, vol.50
, pp. 29-42
-
-
Kottas, A.1
Duan, J.A.2
Gelfand, A.E.3
-
30
-
-
61749097176
-
Bayesian dynamic density estimation
-
DOI: 10.1214/08-BA313.
-
Rodriguez A, ter Horst E. 2008. Bayesian dynamic density estimation. Bayesian Analysis 3: 339-366, DOI: 10.1214/08-BA313.
-
(2008)
Bayesian Analysis
, vol.3
, pp. 339-366
-
-
Rodriguez, A.1
ter Horst, E.2
-
31
-
-
1842816362
-
Gibbs sampling methods for stick-breaking priors
-
DOI:10.1198/016214501750332758.
-
Ishwaran H, James LF. 2001. Gibbs sampling methods for stick-breaking priors. Journal of the American Statistical Association 96: 161-173, DOI:10.1198/016214501750332758.
-
(2001)
Journal of the American Statistical Association
, vol.96
, pp. 161-173
-
-
Ishwaran, H.1
James, L.F.2
-
32
-
-
0001677650
-
Markov chain Monte Carlo in approximate Dirichlet and Beta two-parameter process hierarchical models
-
DOI: 10.1093/biomet/87.2.371.
-
Ishwaran H, Zarepour M. 2000. Markov chain Monte Carlo in approximate Dirichlet and Beta two-parameter process hierarchical models. Biometrika 87:371-390, DOI: 10.1093/biomet/87.2.371.
-
(2000)
Biometrika
, vol.87
, pp. 371-390
-
-
Ishwaran, H.1
Zarepour, M.2
-
33
-
-
13844266046
-
Gridded area-averaged daily precipitation via conditional interpolation
-
DOI: 10.1175/JCLI3246.1.
-
Hewitson BC, Crane RG. 2005. Gridded area-averaged daily precipitation via conditional interpolation. Journal of Climate 18: 41-57, DOI: 10.1175/JCLI3246.1.
-
(2005)
Journal of Climate
, vol.18
, pp. 41-57
-
-
Hewitson, B.C.1
Crane, R.G.2
-
34
-
-
78649420241
-
Posterior simulation in countable mixture models for large datasets
-
DOI: 10.1198/jasa.2010.tm09340.
-
Guha S. 2010. Posterior simulation in countable mixture models for large datasets. Journal of the American Statistical Association 105: 775-786, DOI: 10.1198/jasa.2010.tm09340.
-
(2010)
Journal of the American Statistical Association
, vol.105
, pp. 775-786
-
-
Guha, S.1
-
35
-
-
0033481108
-
Gibbs sampling for Bayesian non-conjugate and hierarchical models by using auxiliary variables
-
DOI: 10.1111/1467-9868.00179.
-
Damien P, Wakefield J, Walker S. 1999. Gibbs sampling for Bayesian non-conjugate and hierarchical models by using auxiliary variables. Journal of the Royal Statistical Society, Series B 61:331-344, DOI: 10.1111/1467-9868.00179.
-
(1999)
Journal of the Royal Statistical Society, Series B
, vol.61
, pp. 331-344
-
-
Damien, P.1
Wakefield, J.2
Walker, S.3
-
36
-
-
84972492387
-
Inference from iterative simulation using multiple sequences (with discussion)
-
DOI: 10.1214/ss/1177011136.
-
Gelman A, Rubin DB. 1992. Inference from iterative simulation using multiple sequences (with discussion). Statistical Science 7: 457-511, DOI: 10.1214/ss/1177011136.
-
(1992)
Statistical Science
, vol.7
, pp. 457-511
-
-
Gelman, A.1
Rubin, D.B.2
|