메뉴 건너뛰기




Volumn 7, Issue 2, 2012, Pages 335-362

Mixture modeling for marked poisson processes

Author keywords

Bayesian nonparametrics; Beta mixtures; Dirichlet process; Marked point process; Multivariate normal mixtures; Non homogeneous Poisson process; Nonparametric regression

Indexed keywords


EID: 84865762723     PISSN: 19360975     EISSN: 19316690     Source Type: Journal    
DOI: 10.1214/12-BA711     Document Type: Article
Times cited : (58)

References (49)
  • 3
    • 28044460504 scopus 로고    scopus 로고
    • Residual analysis for spatial point processes (with discussion), Journal of the Royal Statistical Society
    • Baddeley, A., R. Turner, J. Møller, and M. Hazelton (2005). Residual analysis for spatial point processes (with discussion). Journal of the Royal Statistical Society, Series B 67, 617-666.
    • (2005) Series B , vol.67 , pp. 617-666
    • Baddeley, A.1    Turner, R.2    Møller, J.3    Hazelton, M.4
  • 4
    • 0442293860 scopus 로고    scopus 로고
    • Spatial Poisson regression for health and exposure data measured at disparate resolutions
    • Best, N. G., K. Ickstadt, and R. L. Wolpert (2000). Spatial Poisson regression for health and exposure data measured at disparate resolutions. Journal of the American Statistical Association 95, 1076-1088.
    • (2000) Journal of the American Statistical Association , vol.95 , pp. 1076-1088
    • Best, N.G.1    Ickstadt, K.2    Wolpert, R.L.3
  • 6
    • 0035457521 scopus 로고    scopus 로고
    • Space-time multi type log Gaussian Cox processes with a view to modeling weeds
    • Brix, A. and J. Møller (2001). Space-time multi type log Gaussian Cox processes with a view to modeling weeds. Scandinavian Journal of Statistics 28, 471-488.
    • (2001) Scandinavian Journal of Statistics 28 , pp. 471-488
    • Brix, A.1    Møller, J.2
  • 7
    • 0036482863 scopus 로고    scopus 로고
    • The time-rescaling theorem and its application to neural spike train data analysis
    • Brown, E. M., R. Barbieri, V. Ventura, R. E. Kass, and L. M. Frank (2001). The time-rescaling theorem and its application to neural spike train data analysis. Neural Computation 14, 325-346.
    • (2001) Neural Computation , vol.14 , pp. 325-346
    • Brown, E.M.1    Barbieri, R.2    Ventura, V.3    Kass, R.E.4    Frank, L.M.5
  • 8
    • 0000340832 scopus 로고
    • Bayes methods for a symmetric uni-modal density and its mode
    • Brunner, L. J. and A. Y. Lo (1989). Bayes methods for a symmetric uni-modal density and its mode. Annals of Statistics 17, 1550-1566.
    • (1989) Annals of Statistics , vol.17 , pp. 1550-1566
    • Brunner, L.J.1    Lo, A.Y.2
  • 12
    • 0001501154 scopus 로고
    • Quantifying prior opinion
    • J. M. Bernardo, M. H. DeGroot, D. V. Lindley, and A. F. M. Smith (Eds.), Volume 2. North-Holland
    • Diaconis, P. and D. Ylvisaker (1985). Quantifying prior opinion. In J. M. Bernardo, M. H. DeGroot, D. V. Lindley, and A. F. M. Smith (Eds.), Bayesian Statistics, Volume 2. North-Holland.
    • (1985) Bayesian Statistics
    • Diaconis, P.1    Ylvisaker, D.2
  • 13
    • 0000667309 scopus 로고
    • A point process modelling approach to raised incidence of a rare phenomenon in the vicinity of a prespecified point
    • Diggle, P. J. (1990). A point process modelling approach to raised incidence of a rare phenomenon in the vicinity of a prespecified point. Journal of the Royal Statistical Society, Series A 153, 349-362.
    • (1990) Journal of the Royal Statistical Society Series A , vol.153 , pp. 349-362
    • Diggle, P.J.1
  • 16
    • 0001120413 scopus 로고
    • A Bayesian analysis of some nonparametric problems
    • Ferguson, T. (1973). A Bayesian analysis of some nonparametric problems. Annals of Statistics 1, 209-230.
    • (1973) Annals of Statistics , vol.1 , pp. 209-230
    • Ferguson, T.1
  • 18
    • 84865743567 scopus 로고    scopus 로고
    • Bayesian nonparametric inference for mixed Poisson processes
    • J. Bernardo, M. Bayarri, J. Berger, A. Dawid, D. Heck-erman, A. Smith, and M. West (Eds.), Oxford University Press.
    • Gutiérrez-Peña, E. and L. E. Nieto-Barajas (2003). Bayesian nonparametric inference for mixed Poisson processes. In J. Bernardo, M. Bayarri, J. Berger, A. Dawid, D. Heck-erman, A. Smith, and M. West (Eds.), Bayesian Statistics 7, pp. 163-179. Oxford University Press.
    • (2003) Bayesian Statistics , vol.7 , pp. 163-179
    • Gutiérrez-Peña, E.1    Nieto-Barajas, L.E.2
  • 20
    • 0032364029 scopus 로고    scopus 로고
    • Non-parametric Bayesian estimation of a spatial Poisson intensity
    • Heikkinen, J. and E. Arjas (1998). Non-parametric Bayesian estimation of a spatial Poisson intensity. Scandinavian Journal of Statistics 25, 435-450.
    • (1998) Scandinavian Journal of Statistics , vol.25 , pp. 435-450
    • Heikkinen, J.1    Arjas, E.2
  • 21
    • 0032887428 scopus 로고    scopus 로고
    • Modeling a Poisson forest in variable elevations: a nonparametric Bayesian approach
    • Heikkinen, J. and E. Arjas (1999). Modeling a Poisson forest in variable elevations: a nonparametric Bayesian approach. Biometrics 55, 738-745.
    • (1999) Biometrics , vol.55 , pp. 738-745
    • Heikkinen, J.1    Arjas, E.2
  • 22
    • 0001241617 scopus 로고
    • Nonparametric Bayes Estimators based on beta processes in models for life history data
    • Hjort, N. L. (1990). Nonparametric Bayes Estimators based on beta processes in models for life history data. Annals of Statistics 18, 1259-1294.
    • (1990) Annals of Statistics , vol.18 , pp. 1259-1294
    • Hjort, N.L.1
  • 23
    • 0001484415 scopus 로고    scopus 로고
    • Spatial regression for marked point processes
    • J. M. Bernardo, J. O. Berger, P. Dawid, and A. F. M. Smith (Eds.), Oxford University Press.
    • Ickstadt, K. and R. L. Wolpert (1999). Spatial regression for marked point processes. In J. M. Bernardo, J. O. Berger, P. Dawid, and A. F. M. Smith (Eds.), Bayesian Statistics 6, pp. 323-341. Oxford University Press.
    • (1999) Bayesian Statistics , vol.6 , pp. 323-341
    • Ickstadt, K.1    Wolpert, R.L.2
  • 24
    • 2142830935 scopus 로고    scopus 로고
    • Computational methods for multiplicative in-tensity models using weighted gamma processes: Proportional hazards, marked point processes, and panel count data
    • Ishwaran, H. and L. F. James (2004). Computational methods for multiplicative in-tensity models using weighted gamma processes: Proportional hazards, marked point processes, and panel count data. Journal of the American Statistical Association 99, 175-190
    • (2004) Journal of the American Statistical Association , vol.99 , pp. 175-190
    • Ishwaran, H.1    James, L.F.2
  • 25
    • 0036623091 scopus 로고    scopus 로고
    • Exact and approximate sum representations for the Dirichlet process
    • Ishwaran, H. and M. Zarepour (2002). Exact and approximate sum representations for the Dirichlet process. The Canadian Journal of Statistics 30, 269-283.
    • (2002) The Canadian Journal of Statistics , vol.30 , pp. 269-283
    • Ishwaran, H.1    Zarepour, M.2
  • 26
    • 77956703391 scopus 로고    scopus 로고
    • Spatial mixture modelling for unobserved point processes: Examples in immunofluorescence histology
    • Ji, C., D. Merl, T. B. Kepler, and M. West (2009). Spatial mixture modelling for unobserved point processes: Examples in immunofluorescence histology. Bayesian Analysis 4, 297-316.
    • (2009) Bayesian Analysis , vol.4 , pp. 297-316
    • Ji, C.1    Merl, D.2    Kepler, T.B.3    West, M.4
  • 29
    • 34250186433 scopus 로고    scopus 로고
    • Bayesian mixture modeling for spatial Poisson process intensities, with applications to extreme value analysis
    • Kottas, A. and B. Sansó (2007). Bayesian mixture modeling for spatial Poisson process intensities, with applications to extreme value analysis. Journal of Statistical Planning and Inference 137, 3151-3163.
    • (2007) Journal of Statistical Planning and Inference , vol.137 , pp. 3151-3163
    • Kottas, A.1    Sansó, B.2
  • 30
    • 77949668401 scopus 로고    scopus 로고
    • Bayesian nonparametric modeling for comparison of single-neuron firing intensities
    • Kottas, A. and S. Behseta (2010). Bayesian nonparametric modeling for comparison of single-neuron firing intensities. Biometrics 66, 277-286.
    • (2010) Biometrics , vol.66 , pp. 277-286
    • Kottas, A.1    Behseta, S.2
  • 33
    • 0347771319 scopus 로고    scopus 로고
    • Bayesian computation for nonhomogeneous Poisson processes in software reliability
    • Kuo, L. and T. Y. Yang (1996). Bayesian computation for nonhomogeneous Poisson processes in software reliability. Journal of the American Statistical Association 91, 763-773.
    • (1996) Journal of the American Statistical Association , vol.91 , pp. 763-773
    • Kuo, L.1    Yang, T.Y.2
  • 34
    • 78650436752 scopus 로고    scopus 로고
    • Analysis of Minnesota colon and rectum cancer point patterns with spatial and nonspatial covariate information
    • Liang, S., B. P. Carlin, and A. E. Gelfand (2009). Analysis of Minnesota colon and rectum cancer point patterns with spatial and nonspatial covariate information. The Annals of Applied Statistics 3, 943-962.
    • (2009) The Annals of Applied Statistics , vol.3 , pp. 943-962
    • Liang, S.1    Carlin, B.P.2    Gelfand, A.E.3
  • 35
    • 84963474993 scopus 로고
    • Bayesian inference for Poisson process models with censored data
    • Lo, A. Y. (1992). Bayesian inference for Poisson process models with censored data. Journal of Nonparametric Statistics 2, 71-80.
    • (1992) Journal of Nonparametric Statistics , vol.2 , pp. 71-80
    • Lo, A.Y.1
  • 38
    • 0033466420 scopus 로고    scopus 로고
    • Sequential importance sampling for nonparametric Bayes models: The next generation
    • MacEachern, S. N., M. Clyde, and J. S. Liu (1999). Sequential importance sampling for nonparametric Bayes models: The next generation. The Canadian Journal of Statistics 27, 251-267.
    • (1999) The Canadian Journal of Statistics , vol.27 , pp. 251-267
    • MacEachern, S.N.1    Clyde, M.2    Liu, J.S.3
  • 41
    • 0002881872 scopus 로고    scopus 로고
    • Bayesian curve fitting using multivariate normal mixtures
    • Müller, P., A. Erkanli, and M. West (1996). Bayesian curve fitting using multivariate normal mixtures. Biometrika 83, 67-79.
    • (1996) Biometrika , vol.83 , pp. 67-79
    • Müller, P.1    Erkanli, A.2    West, M.3
  • 42
    • 77950032550 scopus 로고    scopus 로고
    • Markov chain sampling methods for Dirichlet process mixture models
    • Neal, R. (2000). Markov chain sampling methods for Dirichlet process mixture models. Journal of Computational and Graphical Statistics 9, 249-265.
    • (2000) Journal of Computational and Graphical Statistics , vol.9 , pp. 249-265
    • Neal, R.1
  • 43
    • 0000130672 scopus 로고    scopus 로고
    • Some developments of the Blackwell-MacQueen urn scheme
    • T. S. Ferguson, L. S. Shapley, and J. B. MacQueen (Eds.), IMS Lecture Notes-Monograph Series, 347
    • Pitman, J. (1996). Some developments of the Blackwell-MacQueen urn scheme. In T. S. Ferguson, L. S. Shapley, and J. B. MacQueen (Eds.), Statistics, Probability and Game Theory, IMS Lecture Notes -Monograph Series, 30, pp. 245-267.
    • (1996) Statistics, Probability and Game Theory , vol.30 , pp. 245-267
    • Pitman, J.1
  • 44
    • 21844511627 scopus 로고
    • A space-time survival point process for a longleaf pine forest in southern Georgia
    • Rathburn, S. L. and N. Cressie (1994). A space-time survival point process for a longleaf pine forest in southern Georgia. Journal of the American Statistical Association 89, 1164-1174.
    • (1994) Journal of the American Statistical Association , vol.89 , pp. 1164-1174
    • Rathburn, S.L.1    Cressie, N.2
  • 45
    • 60449108968 scopus 로고    scopus 로고
    • Nonparametric functional data analysis through Bayesian density estimation
    • Rodriguez, A., D. B. Dunson, and A. E. Gelfand (2009). Nonparametric functional data analysis through Bayesian density estimation. Biometrika 96, 149-162.
    • (2009) Biometrika , vol.96 , pp. 149-162
    • Rodriguez, A.1    Dunson, D.B.2    Gelfand, A.E.3
  • 46
    • 0000720609 scopus 로고
    • A constructive definition of the Dirichlet prior
    • Sethuraman, J. (1994). A constructive definition of the Dirichlet prior. Statistica Sinica 4, 639-650.
    • (1994) Statistica Sinica , vol.4 , pp. 639-650
    • Sethuraman, J.1
  • 47
    • 78651304323 scopus 로고    scopus 로고
    • Autoregressive mixture models for dynamic spatial Poisson processes: Application to tracking intensity of violent crime
    • Taddy, M. (2010). Autoregressive mixture models for dynamic spatial Poisson processes: Application to tracking intensity of violent crime Journal of the American Statistical Association 105, 1403-1417.
    • (2010) Journal of the American Statistical Association , vol.105 , pp. 1403-1417
    • Taddy, M.1
  • 48
    • 78649411170 scopus 로고    scopus 로고
    • A Bayesian nonparametric approach to inference for quantile regression
    • Taddy, M. and A. Kottas (2010). A Bayesian nonparametric approach to inference for quantile regression. Journal of Business and Economic Statistics 28, 357-369.
    • (2010) Journal of Business and Economic Statistics , vol.28 , pp. 357-369
    • Taddy, M.1    Kottas, A.2
  • 49
    • 0001121317 scopus 로고    scopus 로고
    • Poisson/gamma random field models for spatial statistics
    • Wolpert, R. L. and K. Ickstadt (1998). Poisson/gamma random field models for spatial statistics. Biometrika 85, 251-267.
    • (1998) Biometrika , vol.85 , pp. 251-267
    • Wolpert, R.L.1    Ickstadt, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.