메뉴 건너뛰기




Volumn 87, Issue 2, 2000, Pages 371-390

Markov chain Monte Carlo in approximate Dirichlet and beta two-parameter process hierarchical models

Author keywords

Almost sure truncation; Generalised Dirichlet distribution; Mixture of Dirichlet processes; Nonparametric hierarchical model; Normal mean mixture; Random probability measure; Weak convergence in distribution

Indexed keywords


EID: 0001677650     PISSN: 00063444     EISSN: None     Source Type: Journal    
DOI: 10.1093/biomet/87.2.371     Document Type: Article
Times cited : (213)

References (27)
  • 1
    • 0000708831 scopus 로고
    • Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems
    • ANTONIAK, C. E. (1974). Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. Ann. Statist. 2, 1152-74.
    • (1974) Ann. Statist. , vol.2 , pp. 1152-1174
    • Antoniak, C.E.1
  • 2
    • 0002617436 scopus 로고
    • Ferguson distributions via Polya urn schemes
    • BLACKWELL, D. & MACQUEEN, J. B. (1973). Ferguson distributions via Polya urn schemes. Ann. Statist. 1, 353-5.
    • (1973) Ann. Statist. , vol.1 , pp. 353-355
    • Blackwell, D.1    Macqueen, J.B.2
  • 3
    • 84947379310 scopus 로고
    • Concepts of independence for proportions with a generalization of the Dirichlet distribution
    • CONNOR, R. J. & MOSIMANN, J. E. (1969). Concepts of independence for proportions with a generalization of the Dirichlet distribution. J. Am. Statist. Assoc. 64, 194-206.
    • (1969) J. Am. Statist. Assoc. , vol.64 , pp. 194-206
    • Connor, R.J.1    Mosimann, J.E.2
  • 4
    • 8644293165 scopus 로고    scopus 로고
    • Computing posterior distributions for covariance matrices
    • Proceedings of the 30th Symposium on the Interface, Ed. S. Weisberg, Minneapolis, MN: Computing Science and Statistics
    • DANIELS, M. J. (1998). Computing posterior distributions for covariance matrices. In Computing Science and Statistics, 30, Proceedings of the 30th Symposium on the Interface, Ed. S. Weisberg, pp. 192-6. Minneapolis, MN: Computing Science and Statistics.
    • (1998) Computing Science and Statistics , vol.30 , pp. 192-196
    • Daniels, M.J.1
  • 5
    • 21344479762 scopus 로고
    • Estimating normal means with a Dirichlet process prior
    • ESCOBAR, M. D. (1994). Estimating normal means with a Dirichlet process prior. J. Am. Statist. Assoc. 89, 268-77.
    • (1994) J. Am. Statist. Assoc. , vol.89 , pp. 268-277
    • Escobar, M.D.1
  • 6
    • 84950937290 scopus 로고
    • Bayesian density estimation and inference using mixtures
    • ESCOBAR, M. D. & WEST, M. (1995). Bayesian density estimation and inference using mixtures. J. Am. Statist. Assoc. 90, 577-88.
    • (1995) J. Am. Statist. Assoc. , vol.90 , pp. 577-588
    • Escobar, M.D.1    West, M.2
  • 7
    • 0012890141 scopus 로고    scopus 로고
    • Computing nonparametric hierarchical models
    • Ed. D. Dey, P. Müller and D. Sinha, New York: Springer
    • ESCOBAR, M. D. & WEST, M. (1998). Computing nonparametric hierarchical models. In Practical Nonparametric and Semiparametric Bayesian Statistics, Ed. D. Dey, P. Müller and D. Sinha, pp. 1-22. New York: Springer.
    • (1998) Practical Nonparametric and Semiparametric Bayesian Statistics , pp. 1-22
    • Escobar, M.D.1    West, M.2
  • 8
    • 0001120413 scopus 로고
    • A Bayesian analysis of some nonparametric problems
    • FERGUSON, T. S. (1973). A Bayesian analysis of some nonparametric problems. Ann. Statist. 1, 209-30.
    • (1973) Ann. Statist. , vol.1 , pp. 209-230
    • Ferguson, T.S.1
  • 9
    • 0030980644 scopus 로고    scopus 로고
    • Large hierarchical Bayesian analysis of multivariate survival data
    • GUSTAFSON, P. (1997). Large hierarchical Bayesian analysis of multivariate survival data. Biometrics 53, 230-42.
    • (1997) Biometrics , vol.53 , pp. 230-242
    • Gustafson, P.1
  • 10
    • 0001277507 scopus 로고    scopus 로고
    • Bayesian approaches to non- And semiparametric density estimation
    • Ed. J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, Oxford: Oxford University Press
    • HJORT, N. L. (1996). Bayesian approaches to non- and semiparametric density estimation. In Bayesian Statistics 5, Ed. J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, pp. 223-53. Oxford: Oxford University Press.
    • (1996) Bayesian Statistics , vol.5 , pp. 223-253
    • Hjort, N.L.1
  • 11
    • 8644257632 scopus 로고    scopus 로고
    • Applications of hybrid Monte Carlo to Bayesian generalized linear models: Quasi-complete separation and neural networks
    • ISHWARAN, H. (1999). Applications of hybrid Monte Carlo to Bayesian generalized linear models: quasi-complete separation and neural networks. J. Comp. Graph. Statist. 8, 779-99.
    • (1999) J. Comp. Graph. Statist. , vol.8 , pp. 779-799
    • Ishwaran, H.1
  • 12
    • 0000220846 scopus 로고
    • Contributions to the theory of Dirichlet processes
    • KORWAR, R. & HOLLANDER, M. (1973). Contributions to the theory of Dirichlet processes. Ann. Prob, 1, 705-11.
    • (1973) Ann. Prob , vol.1 , pp. 705-711
    • Korwar, R.1    Hollander, M.2
  • 13
    • 84972808999 scopus 로고
    • Estimating normal means with a conjugate style Dirichlet process prior
    • MACEACHERN, S. N. (1994). Estimating normal means with a conjugate style Dirichlet process prior. Commun. Statist. B 23, 727-41.
    • (1994) Commun. Statist. B , vol.23 , pp. 727-741
    • Maceachern, S.N.1
  • 14
    • 1842545720 scopus 로고    scopus 로고
    • Computational methods for mixture of Dirichlet process models
    • Ed. D. Dey, P. Müller and D. Sinha, New York: Springer
    • MACEACHERN, S. N. (1998). Computational methods for mixture of Dirichlet process models. In Practical Nonparametric and Semiparametric Bayesian Statistics, Ed. D. Dey, P. Müller and D. Sinha, pp. 23-43. New York: Springer.
    • (1998) Practical Nonparametric and Semiparametric Bayesian Statistics , pp. 23-43
    • Maceachern, S.N.1
  • 15
    • 0032221058 scopus 로고    scopus 로고
    • Estimating mixture of Dirichlet process models
    • MACEACHERN, S. N. & MÜLLER, P. (1998). Estimating mixture of Dirichlet process models. J. Comp. Graph. Statist. 7, 223-38.
    • (1998) J. Comp. Graph. Statist. , vol.7 , pp. 223-238
    • Maceachern, S.N.1    Müller, P.2
  • 16
    • 0009908971 scopus 로고    scopus 로고
    • Bayesian nonparametric predictive inference and bootstrap techniques
    • MULIERE, P. & SECCHI, P. (1996). Bayesian nonparametric predictive inference and bootstrap techniques. Ann. Inst. Statist. Math. 48, 663-73.
    • (1996) Ann. Inst. Statist. Math. , vol.48 , pp. 663-673
    • Muliere, P.1    Secchi, P.2
  • 17
    • 0032091593 scopus 로고    scopus 로고
    • Approximating distributions of random functionals of Ferguson-Dirichlet priors
    • MULIERE, P. & TARDELLA, L. (1998). Approximating distributions of random functionals of Ferguson-Dirichlet priors. Can. J. Statist. 26, 283-97.
    • (1998) Can. J. Statist. , vol.26 , pp. 283-297
    • Muliere, P.1    Tardella, L.2
  • 18
    • 0038913704 scopus 로고    scopus 로고
    • Extending the family of Bayesian bootstraps and exchangeable urn schemes
    • MULIERE, P. & WALKER, S. (1998). Extending the family of Bayesian bootstraps and exchangeable urn schemes. J. R. Statist. Soc. B 60, 175-82.
    • (1998) J. R. Statist. Soc. B , vol.60 , pp. 175-182
    • Muliere, P.1    Walker, S.2
  • 19
    • 0002881872 scopus 로고    scopus 로고
    • Bayesian curve fitting using multivariate normal mixtures
    • MÜLLER, P., ERKANLI, A. & WEST, M. (1996). Bayesian curve fitting using multivariate normal mixtures. Biometrika 83, 67-79.
    • (1996) Biometrika , vol.83 , pp. 67-79
    • Müller, P.1    Erkanli, A.2    West, M.3
  • 21
    • 0031534984 scopus 로고    scopus 로고
    • The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator
    • PITMAN, J. & YOR, M. (1997). The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator. Ann. Prob. 25, 855-900.
    • (1997) Ann. Prob. , vol.25 , pp. 855-900
    • Pitman, J.1    Yor, M.2
  • 22
    • 0000795635 scopus 로고
    • Density estimation with confidence sets exemplified by superclusters and voids in the galaxies
    • ROEDER, K. (1990). Density estimation with confidence sets exemplified by superclusters and voids in the galaxies. J. Am. Statist. Assoc. 85, 617-24.
    • (1990) J. Am. Statist. Assoc. , vol.85 , pp. 617-624
    • Roeder, K.1
  • 23
    • 0000720609 scopus 로고
    • A constructive definition of Dirichlet priors
    • SETHURAMAN, J. (1994). A constructive definition of Dirichlet priors. Statist. Sinica 4, 639-50.
    • (1994) Statist. Sinica , vol.4 , pp. 639-650
    • Sethuraman, J.1
  • 24
    • 0002763716 scopus 로고    scopus 로고
    • Sampling methods for Bayesian nonparametric inference involving stochastic processes
    • Ed. D. Dey, P. Müller and D. Sinha, New York: Springer
    • WALKER, S. & DAMIEN, P. (1998). Sampling methods for Bayesian nonparametric inference involving stochastic processes. In Practical Nonparametric and Semiparametric Bayesian Statistics, Ed. D. Dey, P. Müller and D. Sinha, pp. 243-54. New York: Springer.
    • (1998) Practical Nonparametric and Semiparametric Bayesian Statistics , pp. 243-254
    • Walker, S.1    Damien, P.2
  • 25
    • 0031508902 scopus 로고    scopus 로고
    • Beta-Stacy processes and a generalization of the Pólya-urn scheme
    • WALKER, S. & MULIERE, P. (1997). Beta-Stacy processes and a generalization of the Pólya-urn scheme. Ann. Statist. 25, 1762-80.
    • (1997) Ann. Statist. , vol.25 , pp. 1762-1780
    • Walker, S.1    Muliere, P.2
  • 26
    • 0242629909 scopus 로고    scopus 로고
    • Population models with a nonparametric random coefficient distribution
    • WALKER, S. & WAKEFIELD, J. (1998). Population models with a nonparametric random coefficient distribution. Sankhyā B 60, 196-214.
    • (1998) Sankhyā B , vol.60 , pp. 196-214
    • Walker, S.1    Wakefield, J.2
  • 27
    • 0002612391 scopus 로고
    • Hierarchical priors and mixture models, with applications in regression and density estimation
    • Ed. A. F. M. Smith and P. R. Freeman, London: John Wiley
    • WEST, M., MÜLLER, P. & ESCOBAR, M. D. (1994). Hierarchical priors and mixture models, with applications in regression and density estimation. In Aspects of Uncertainty: A Tribute to D. V. Lindley, Ed. A. F. M. Smith and P. R. Freeman, pp. 363-86. London: John Wiley.
    • (1994) Aspects of Uncertainty: A Tribute to D. V. Lindley , pp. 363-386
    • West, M.1    Müller, P.2    Escobar, M.D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.