메뉴 건너뛰기




Volumn 429, Issue , 2013, Pages 243-251

Separation of acetic acid from monosaccharides by NF and RO membranes: Performance comparison

Author keywords

Acetic acid; Monosaccharides; Nanofiltration (NF); Reverse osmosis (RO); Separation

Indexed keywords

ACID SEPARATION; ETHANOL PRODUCTION; FEED CONCENTRATION; FERMENTABLE SUGARS; FERMENTATION PROCESS; HIGH CONCENTRATION; INHIBITORY COMPOUNDS; LIGNOCELLULOSIC MATERIAL; LOW CONCENTRATIONS; MODEL SOLUTION; MONOSACCHARIDES; NF MEMBRANES; NF PROCESS; OPERATION CONDITIONS; PERFORMANCE COMPARISON; RO MEMBRANE; RO PROCESS; SEPARATION FACTORS; SEPARATION PERFORMANCE; SUGAR CONCENTRATION;

EID: 84871652469     PISSN: 03767388     EISSN: 18733123     Source Type: Journal    
DOI: 10.1016/j.memsci.2012.11.043     Document Type: Article
Times cited : (124)

References (44)
  • 2
    • 20344390801 scopus 로고    scopus 로고
    • Making fuels from biomass
    • Rostrup-Nielsen J.R. Making fuels from biomass. Science 2005, 308:1421-1422.
    • (2005) Science , vol.308 , pp. 1421-1422
    • Rostrup-Nielsen, J.R.1
  • 3
    • 1342265594 scopus 로고    scopus 로고
    • Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review
    • Mussatto S.I., Roberto I.C. Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresour. Technol. 2004, 93:1-10.
    • (2004) Bioresour. Technol. , vol.93 , pp. 1-10
    • Mussatto, S.I.1    Roberto, I.C.2
  • 4
    • 0343183325 scopus 로고    scopus 로고
    • Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification
    • Palmqvist E., Hahn-Hägerdal B. Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresour. Technol. 2000, 74:17-24.
    • (2000) Bioresour. Technol. , vol.74 , pp. 17-24
    • Palmqvist, E.1    Hahn-Hägerdal, B.2
  • 5
    • 0343618697 scopus 로고    scopus 로고
    • Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition
    • Palmqvist E., Hahn-Hägerdal B. Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour. Technol. 2000, 74:25-33.
    • (2000) Bioresour. Technol. , vol.74 , pp. 25-33
    • Palmqvist, E.1    Hahn-Hägerdal, B.2
  • 6
    • 43849100481 scopus 로고    scopus 로고
    • Characterization of dilute acid pretreatment of silvergrass for ethanol production
    • Guo G.L., Chen W.H., Men L.C., Hwang W.S. Characterization of dilute acid pretreatment of silvergrass for ethanol production. Bioresour. Technol. 2008, 99:6046-6053.
    • (2008) Bioresour. Technol. , vol.99 , pp. 6046-6053
    • Guo, G.L.1    Chen, W.H.2    Men, L.C.3    Hwang, W.S.4
  • 7
    • 44749091074 scopus 로고    scopus 로고
    • A review of separation technologies in current and future biorefineries
    • Huang H.J., Ramaswamy S., Tschirner U., Ramarao B. A review of separation technologies in current and future biorefineries. Sep. Purif. Technol. 2008, 62:1-21.
    • (2008) Sep. Purif. Technol. , vol.62 , pp. 1-21
    • Huang, H.J.1    Ramaswamy, S.2    Tschirner, U.3    Ramarao, B.4
  • 8
    • 79951843066 scopus 로고    scopus 로고
    • Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review
    • Parawira W., Tekere M. Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review. Crit. Rev. Biotechnol. 2011, 31:20-31.
    • (2011) Crit. Rev. Biotechnol. , vol.31 , pp. 20-31
    • Parawira, W.1    Tekere, M.2
  • 10
    • 55049123812 scopus 로고    scopus 로고
    • Adsorptive membranes and resins for acetic acid removal from biomass hydrolysates
    • Wickramasinghe S.R., Grzenia D.L. Adsorptive membranes and resins for acetic acid removal from biomass hydrolysates. Desalination 2008, 234:144-151.
    • (2008) Desalination , vol.234 , pp. 144-151
    • Wickramasinghe, S.R.1    Grzenia, D.L.2
  • 11
    • 48249114109 scopus 로고    scopus 로고
    • Membrane extraction for removal of acetic acid from biomass hydrolysates
    • Grzenia D.L., Schell D.J., Wickramasinghe S.R. Membrane extraction for removal of acetic acid from biomass hydrolysates. J. Membr. Sci. 2008, 322:189-195.
    • (2008) J. Membr. Sci. , vol.322 , pp. 189-195
    • Grzenia, D.L.1    Schell, D.J.2    Wickramasinghe, S.R.3
  • 12
    • 77649185247 scopus 로고    scopus 로고
    • Membrane technology for purification of enzymatically produced oligosaccharides: molecular and operational features affecting performance
    • Pinelo M., Jonsson G., Meyer A.S. Membrane technology for purification of enzymatically produced oligosaccharides: molecular and operational features affecting performance. Sep. Purif. Technol. 2009, 70:1-11.
    • (2009) Sep. Purif. Technol. , vol.70 , pp. 1-11
    • Pinelo, M.1    Jonsson, G.2    Meyer, A.S.3
  • 13
    • 79959963918 scopus 로고    scopus 로고
    • Separation of acetic acid from the aqueous fraction of fast pyrolysis bio-oils using nanofiltration and reverse osmosis membranes
    • Teella A., Huber G.W., Ford D.M. Separation of acetic acid from the aqueous fraction of fast pyrolysis bio-oils using nanofiltration and reverse osmosis membranes. J. Membr. Sci. 2011, 378:495-502.
    • (2011) J. Membr. Sci. , vol.378 , pp. 495-502
    • Teella, A.1    Huber, G.W.2    Ford, D.M.3
  • 14
    • 33846867688 scopus 로고    scopus 로고
    • Separation of phenols and furfural by pervaporation and reverse osmosis membranes from biomass-superheated steam pyrolysis-derived aqueous solution
    • Sagehashi M., Nomura T., Shishido H., Sakoda A. Separation of phenols and furfural by pervaporation and reverse osmosis membranes from biomass-superheated steam pyrolysis-derived aqueous solution. Bioresour. Technol. 2007, 98:2018-2026.
    • (2007) Bioresour. Technol. , vol.98 , pp. 2018-2026
    • Sagehashi, M.1    Nomura, T.2    Shishido, H.3    Sakoda, A.4
  • 15
    • 79957873762 scopus 로고    scopus 로고
    • Separation of furfural from monosaccharides by nanofiltration
    • Qi B., Luo J., Chen X., Hang X., Wan Y. Separation of furfural from monosaccharides by nanofiltration. Bioresour. Technol. 2011, 102:7111-7118.
    • (2011) Bioresour. Technol. , vol.102 , pp. 7111-7118
    • Qi, B.1    Luo, J.2    Chen, X.3    Hang, X.4    Wan, Y.5
  • 16
    • 0028820715 scopus 로고
    • Nanofiltration of model acetate solutions
    • Han I., Cheryan M. Nanofiltration of model acetate solutions. J. Membr. Sci. 1995, 107:107-113.
    • (1995) J. Membr. Sci. , vol.107 , pp. 107-113
    • Han, I.1    Cheryan, M.2
  • 18
    • 0000975915 scopus 로고
    • A rapid method for the determination of pentosans in wheat flour
    • Douglas S. A rapid method for the determination of pentosans in wheat flour. Food Chem. 1981, 7:139-145.
    • (1981) Food Chem. , vol.7 , pp. 139-145
    • Douglas, S.1
  • 19
    • 77951895105 scopus 로고    scopus 로고
    • Rapid determination of sugars in hemicellulose extraction liquor by dual-wavelength spectrophotometry
    • Chi C., Zhang Z., Chai X., Ge W. Rapid determination of sugars in hemicellulose extraction liquor by dual-wavelength spectrophotometry. Spectrosc. Spectr. Anal. 2010, 30:1084-1087.
    • (2010) Spectrosc. Spectr. Anal. , vol.30 , pp. 1084-1087
    • Chi, C.1    Zhang, Z.2    Chai, X.3    Ge, W.4
  • 20
    • 84871648041 scopus 로고    scopus 로고
    • CRC Press/Taylor and Francis, Boca Raton, FL, D. Lide (Ed.)
    • 2009, CRC Press/Taylor and Francis, Boca Raton, FL. D. Lide (Ed.).
    • (2009)
  • 22
    • 0030590547 scopus 로고    scopus 로고
    • Effect of solution chemistry on the surface charge of polymeric reverse osmosis and nanofiltration membranes
    • Childress A.E., Elimelech M. Effect of solution chemistry on the surface charge of polymeric reverse osmosis and nanofiltration membranes. J. Membr. Sci. 1996, 119:253-268.
    • (1996) J. Membr. Sci. , vol.119 , pp. 253-268
    • Childress, A.E.1    Elimelech, M.2
  • 23
    • 13244273655 scopus 로고    scopus 로고
    • The role of membrane surface charge and solute physico-chemical properties in the rejection of organic acids by NF membranes
    • Bellona C., Drewes J.E. The role of membrane surface charge and solute physico-chemical properties in the rejection of organic acids by NF membranes. J. Membr. Sci. 2005, 249:227-234.
    • (2005) J. Membr. Sci. , vol.249 , pp. 227-234
    • Bellona, C.1    Drewes, J.E.2
  • 24
    • 33745714107 scopus 로고    scopus 로고
    • Effect of pH on hydrophilicity and charge and their effect on the filtration efficiency of NF membranes at different pH
    • Mänttäri M., Pihlajamäki A., Nyström M. Effect of pH on hydrophilicity and charge and their effect on the filtration efficiency of NF membranes at different pH. J. Membr. Sci. 2006, 280:311-320.
    • (2006) J. Membr. Sci. , vol.280 , pp. 311-320
    • Mänttäri, M.1    Pihlajamäki, A.2    Nyström, M.3
  • 25
    • 37349095629 scopus 로고    scopus 로고
    • A study on the removal of organic acids from wastewaters using nanofiltration membranes
    • Choi J.H., Fukushi K., Yamamoto K. A study on the removal of organic acids from wastewaters using nanofiltration membranes. Sep. Purif. Technol. 2008, 59:17-25.
    • (2008) Sep. Purif. Technol. , vol.59 , pp. 17-25
    • Choi, J.H.1    Fukushi, K.2    Yamamoto, K.3
  • 26
    • 0344334035 scopus 로고    scopus 로고
    • Influence of molecular size, polarity and charge on the retention of organic molecules by nanofiltration
    • Van der Bruggen B., Schaep J., Wilms D., Vandecasteele C. Influence of molecular size, polarity and charge on the retention of organic molecules by nanofiltration. J. Membr. Sci. 1999, 156:29-41.
    • (1999) J. Membr. Sci. , vol.156 , pp. 29-41
    • Van der Bruggen, B.1    Schaep, J.2    Wilms, D.3    Vandecasteele, C.4
  • 27
    • 0036053812 scopus 로고    scopus 로고
    • Rejection of organic compounds by ultra-low pressure reverse osmosis membrane
    • Ozaki H., Li H. Rejection of organic compounds by ultra-low pressure reverse osmosis membrane. Water Res. 2002, 36:123-130.
    • (2002) Water Res. , vol.36 , pp. 123-130
    • Ozaki, H.1    Li, H.2
  • 28
    • 0029657192 scopus 로고    scopus 로고
    • The influence of intermolecular interactions on the selectivity of several organic acids in aqueous multicomponent systems during reverse osmosis
    • Laufenberg G., Hausmanns S., Kunz B. The influence of intermolecular interactions on the selectivity of several organic acids in aqueous multicomponent systems during reverse osmosis. J. Membr. Sci. 1996, 110:59-68.
    • (1996) J. Membr. Sci. , vol.110 , pp. 59-68
    • Laufenberg, G.1    Hausmanns, S.2    Kunz, B.3
  • 29
    • 22144438003 scopus 로고    scopus 로고
    • Concentration of xylose reaction liquor by nanofiltration for the production of xylitol sugar alcohol
    • Murthy G., Sridhar S., Shyam Sunder M., Shankaraiah B., Ramakrishna M. Concentration of xylose reaction liquor by nanofiltration for the production of xylitol sugar alcohol. Sep. Purif. Technol. 2005, 44:221-228.
    • (2005) Sep. Purif. Technol. , vol.44 , pp. 221-228
    • Murthy, G.1    Sridhar, S.2    Shyam Sunder, M.3    Shankaraiah, B.4    Ramakrishna, M.5
  • 30
    • 0030153033 scopus 로고    scopus 로고
    • New techniques for extreme conditions: high temperature reverse osmosis and nanofiltration
    • Snow M.J.H., de Winter D., Buckingham R., Campbell J., Wagner J. New techniques for extreme conditions: high temperature reverse osmosis and nanofiltration. Desalination 1996, 105:57-61.
    • (1996) Desalination , vol.105 , pp. 57-61
    • Snow, M.J.H.1    de Winter, D.2    Buckingham, R.3    Campbell, J.4    Wagner, J.5
  • 31
    • 39749178267 scopus 로고    scopus 로고
    • The influence of pH, salt and temperature on nanofiltration performance
    • Nilsson M., Trägårdh G., Östergren K. The influence of pH, salt and temperature on nanofiltration performance. J. Membr. Sci. 2008, 312:97-106.
    • (2008) J. Membr. Sci. , vol.312 , pp. 97-106
    • Nilsson, M.1    Trägårdh, G.2    Östergren, K.3
  • 32
    • 0141888200 scopus 로고    scopus 로고
    • Temperature effects on sieving characteristics of thin-film composite nanofiltration membranes: pore size distributions and transport parameters
    • Sharma R.R., Agrawal R., Chellam S. Temperature effects on sieving characteristics of thin-film composite nanofiltration membranes: pore size distributions and transport parameters. J. Membr. Sci. 2003, 223:69-87.
    • (2003) J. Membr. Sci. , vol.223 , pp. 69-87
    • Sharma, R.R.1    Agrawal, R.2    Chellam, S.3
  • 33
    • 33947369102 scopus 로고    scopus 로고
    • Effect of temperature on the transport of water and neutral solutes across nanofiltration membranes
    • Amar N.B., Saidani H., Deratani A., Palmeri J. Effect of temperature on the transport of water and neutral solutes across nanofiltration membranes. Langmuir 2007, 23:2937-2952.
    • (2007) Langmuir , vol.23 , pp. 2937-2952
    • Amar, N.B.1    Saidani, H.2    Deratani, A.3    Palmeri, J.4
  • 36
    • 62649144023 scopus 로고    scopus 로고
    • 4-catalyzed hydrothermal pretreatment of rapeseed straw for bioconversion to ethanol: focusing on pretreatment at high solids content
    • 4-catalyzed hydrothermal pretreatment of rapeseed straw for bioconversion to ethanol: focusing on pretreatment at high solids content. Bioresour. Technol. 2009, 100:3048-3053.
    • (2009) Bioresour. Technol. , vol.100 , pp. 3048-3053
    • Lu, X.1    Zhang, Y.2    Angelidaki, I.3
  • 38
    • 0020047825 scopus 로고
    • Power solvent production by Klebsiella pneumoniae grown on sugars present in wood hemicellulose
    • Yu E., Saddler J. Power solvent production by Klebsiella pneumoniae grown on sugars present in wood hemicellulose. Biotechnol. Lett. 1982, 4:121-126.
    • (1982) Biotechnol. Lett. , vol.4 , pp. 121-126
    • Yu, E.1    Saddler, J.2
  • 39
    • 0020749650 scopus 로고
    • Hemicellulose hydrolysis and fermentation of resulting pentoses to ethanol
    • Lee Y., McCaskey T. Hemicellulose hydrolysis and fermentation of resulting pentoses to ethanol. Tappi 1983, 66:102-107.
    • (1983) Tappi , vol.66 , pp. 102-107
    • Lee, Y.1    McCaskey, T.2
  • 40
    • 0031214487 scopus 로고    scopus 로고
    • Acetic acid-friend or foe in anaerobic batch conversion of glucose to ethanol by Saccharomyces cerevisiae?
    • Taherzadeh M.J., Niklasson C., Lidén G. Acetic acid-friend or foe in anaerobic batch conversion of glucose to ethanol by Saccharomyces cerevisiae?. Chem. Eng. Sci. 1997, 52:2653-2659.
    • (1997) Chem. Eng. Sci. , vol.52 , pp. 2653-2659
    • Taherzadeh, M.J.1    Niklasson, C.2    Lidén, G.3
  • 41
    • 0033982072 scopus 로고    scopus 로고
    • Energetics of the effect of acetic acid on growth of Saccharomyces cerevisiae
    • Pampulha M.E., Loureiro-Dias M.C. Energetics of the effect of acetic acid on growth of Saccharomyces cerevisiae. FEMS Microbiol. Lett. 2000, 184:69-72.
    • (2000) FEMS Microbiol. Lett. , vol.184 , pp. 69-72
    • Pampulha, M.E.1    Loureiro-Dias, M.C.2
  • 42
    • 0033526123 scopus 로고    scopus 로고
    • Main and interaction effects of acetic acid, furfural, and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts
    • Palmqvist E., Grage H., Meinander N.Q., Hahn-Hägerdal B. Main and interaction effects of acetic acid, furfural, and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts. Biotechnol. Bioeng. 1999, 63:46-55.
    • (1999) Biotechnol. Bioeng. , vol.63 , pp. 46-55
    • Palmqvist, E.1    Grage, H.2    Meinander, N.Q.3    Hahn-Hägerdal, B.4
  • 43
    • 33646438534 scopus 로고    scopus 로고
    • Effect of pH and lactic or acetic acid on ethanol productivity by Saccharomyces cerevisiae in corn mash
    • Graves T., Narendranath N.V., Dawson K., Power R. Effect of pH and lactic or acetic acid on ethanol productivity by Saccharomyces cerevisiae in corn mash. J. Ind. Microbiol. Biotechnol. 2006, 33:469-474.
    • (2006) J. Ind. Microbiol. Biotechnol. , vol.33 , pp. 469-474
    • Graves, T.1    Narendranath, N.V.2    Dawson, K.3    Power, R.4
  • 44
    • 0026078982 scopus 로고
    • Acetic acid inhibition of D-xylose fermentation by Pichia stipitis
    • van Zyl C., Prior B.A., du Preez J.C. Acetic acid inhibition of D-xylose fermentation by Pichia stipitis. Enzyme Microb. Technol. 1991, 13:82-86.
    • (1991) Enzyme Microb. Technol. , vol.13 , pp. 82-86
    • van Zyl, C.1    Prior, B.A.2    du Preez, J.C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.