메뉴 건너뛰기




Volumn 7, Issue 12, 2012, Pages

Fumaric Acid Production in Saccharomyces cerevisiae by In Silico Aided Metabolic Engineering

Author keywords

[No Author keywords available]

Indexed keywords

CARRIER PROTEIN; FUMARIC ACID; PYRUVATE CARBOXYLASE; SUCCINATE FUMARATE TRANSPORTER; UNCLASSIFIED DRUG;

EID: 84871550797     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0052086     Document Type: Article
Times cited : (57)

References (34)
  • 2
    • 0029783287 scopus 로고    scopus 로고
    • Simultaneous production and recovery of fumaric acid from immobilized Rhizopus oryzae with a rotary biofilm contactor and an adsorption column
    • Cao N, Du J, Gong CS, Tsao GT, (1996) Simultaneous production and recovery of fumaric acid from immobilized Rhizopus oryzae with a rotary biofilm contactor and an adsorption column. Appl Environ Microbiol 62: 2926-2931.
    • (1996) Appl Environ Microbiol , vol.62 , pp. 2926-2931
    • Cao, N.1    Du, J.2    Gong, C.S.3    Tsao, G.T.4
  • 4
    • 70350521215 scopus 로고    scopus 로고
    • Metabolic engineering of Saccharomyces cerevisiae for production of carboxylic acids: current status and challenges
    • Abbott DA, Zelle RM, Pronk JT, van Maris AJ, (2009) Metabolic engineering of Saccharomyces cerevisiae for production of carboxylic acids: current status and challenges. FEMS Yeast Res 9: 1123-1136.
    • (2009) FEMS Yeast Res , vol.9 , pp. 1123-1136
    • Abbott, D.A.1    Zelle, R.M.2    Pronk, J.T.3    van Maris, A.J.4
  • 5
    • 62949109270 scopus 로고    scopus 로고
    • Double mutation of the PDC1 and ADH1 genes improves lactate production in the yeast Saccharomyces cerevisiae expressing the bovine lactate dehydrogenase gene
    • Tokuhiro K, Ishida N, Nagamori E, Saitoh S, Onishi T, et al. (2009) Double mutation of the PDC1 and ADH1 genes improves lactate production in the yeast Saccharomyces cerevisiae expressing the bovine lactate dehydrogenase gene. Appl Microbiol Biotechnol 82: 883-890.
    • (2009) Appl Microbiol Biotechnol , vol.82 , pp. 883-890
    • Tokuhiro, K.1    Ishida, N.2    Nagamori, E.3    Saitoh, S.4    Onishi, T.5
  • 6
    • 43049090802 scopus 로고    scopus 로고
    • Malic acid production by Saccharomyces cerevisiae: engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export
    • Zelle RM, de Hulster E, van Winden WA, de Waard P, Dijkema C, et al. (2008) Malic acid production by Saccharomyces cerevisiae: engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export. Appl Environ Microbiol 74: 2766-2777.
    • (2008) Appl Environ Microbiol , vol.74 , pp. 2766-2777
    • Zelle, R.M.1    de Hulster, E.2    van Winden, W.A.3    de Waard, P.4    Dijkema, C.5
  • 7
    • 75749121042 scopus 로고    scopus 로고
    • Key process conditions for production of C4 dicarboxylic acids in bioreactor batch cultures of an engineered Saccharomyces cerevisiae strain
    • Zelle RM, de Hulster E, Kloezen W, Pronk JT, van Maris AJ, (2010) Key process conditions for production of C4 dicarboxylic acids in bioreactor batch cultures of an engineered Saccharomyces cerevisiae strain. Appl Environ Microbiol 76: 744-750.
    • (2010) Appl Environ Microbiol , vol.76 , pp. 744-750
    • Zelle, R.M.1    de Hulster, E.2    Kloezen, W.3    Pronk, J.T.4    van Maris, A.J.5
  • 8
    • 78049430020 scopus 로고    scopus 로고
    • Metabolic engineering of Saccharomyces cerevisiae for the biotechnological production of succinic acid
    • Raab AM, Gebhardt G, Bolotina N, Weuster-Botz D, Lang C, (2010) Metabolic engineering of Saccharomyces cerevisiae for the biotechnological production of succinic acid. Metab Eng 12: 518-525.
    • (2010) Metab Eng , vol.12 , pp. 518-525
    • Raab, A.M.1    Gebhardt, G.2    Bolotina, N.3    Weuster-Botz, D.4    Lang, C.5
  • 9
    • 79953197942 scopus 로고    scopus 로고
    • Shifting the fermentative/oxidative balance in Saccharomyces cerevisiae by transcriptional deregulation of Snf1 via overexpression of the upstream activating kinase Sak1p
    • Raab AM, Hlavacek V, Bolotina N, Lang C, (2011) Shifting the fermentative/oxidative balance in Saccharomyces cerevisiae by transcriptional deregulation of Snf1 via overexpression of the upstream activating kinase Sak1p. Appl Environ Microbiol 77: 1981-1989.
    • (2011) Appl Environ Microbiol , vol.77 , pp. 1981-1989
    • Raab, A.M.1    Hlavacek, V.2    Bolotina, N.3    Lang, C.4
  • 10
    • 84862809523 scopus 로고    scopus 로고
    • Reconstruction of cytosolic fumaric acid biosynthetic pathways in Saccharomyces cerevisiae
    • Xu G, Liu L, Chen J, (2012) Reconstruction of cytosolic fumaric acid biosynthetic pathways in Saccharomyces cerevisiae. Microbial Cell Factories 11: 24.
    • (2012) Microbial Cell Factories , vol.11 , pp. 24
    • Xu, G.1    Liu, L.2    Chen, J.3
  • 12
    • 34249934691 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation
    • Park JH, Lee KH, Kim TY, Lee SY, (2007) Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. Proc Natl Acad Sci U S A 104: 7797-7802.
    • (2007) Proc Natl Acad Sci U S A , vol.104 , pp. 7797-7802
    • Park, J.H.1    Lee, K.H.2    Kim, T.Y.3    Lee, S.Y.4
  • 13
    • 36849002434 scopus 로고    scopus 로고
    • Systems metabolic engineering of Escherichia coli for L-threonine production
    • Lee KH, Park JH, Kim TY, Kim HU, Lee SY, (2007) Systems metabolic engineering of Escherichia coli for L-threonine production. Mol Syst Biol 3: 149.
    • (2007) Mol Syst Biol , vol.3 , pp. 149
    • Lee, K.H.1    Park, J.H.2    Kim, T.Y.3    Kim, H.U.4    Lee, S.Y.5
  • 14
    • 33644832381 scopus 로고    scopus 로고
    • In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production
    • Bro C, Regenberg B, Forster J, Nielsen J, (2006) In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. Metab Eng 8: 102-111.
    • (2006) Metab Eng , vol.8 , pp. 102-111
    • Bro, C.1    Regenberg, B.2    Forster, J.3    Nielsen, J.4
  • 17
    • 3843128481 scopus 로고    scopus 로고
    • Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model
    • Duarte NC, Herrgard MJ, Palsson BO, (2004) Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Res 14: 1298-1309.
    • (2004) Genome Res , vol.14 , pp. 1298-1309
    • Duarte, N.C.1    Herrgard, M.J.2    Palsson, B.O.3
  • 19
    • 0034519221 scopus 로고    scopus 로고
    • Robustness analysis of the Escherichia coli metabolic network
    • Edwards JS, Palsson BO, (2000) Robustness analysis of the Escherichia coli metabolic network. Biotechnol Prog 16: 927-939.
    • (2000) Biotechnol Prog , vol.16 , pp. 927-939
    • Edwards, J.S.1    Palsson, B.O.2
  • 20
    • 51949107835 scopus 로고    scopus 로고
    • Progress in metabolic engineering of Saccharomyces cerevisiae
    • Nevoigt E, (2008) Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev 72: 379-412.
    • (2008) Microbiol Mol Biol Rev , vol.72 , pp. 379-412
    • Nevoigt, E.1
  • 21
    • 0030664759 scopus 로고    scopus 로고
    • Identification of the yeast ACR1 gene product as a succinate-fumarate transporter essential for growth on ethanol or acetate
    • Palmieri L, Lasorsa FM, De Palma A, Palmieri F, Runswick MJ, et al. (1997) Identification of the yeast ACR1 gene product as a succinate-fumarate transporter essential for growth on ethanol or acetate. FEBS Lett 417: 114-118.
    • (1997) FEBS Lett , vol.417 , pp. 114-118
    • Palmieri, L.1    Lasorsa, F.M.2    De Palma, A.3    Palmieri, F.4    Runswick, M.J.5
  • 22
    • 0345059257 scopus 로고    scopus 로고
    • The succinate/fumarate transporter Acr1p of Saccharomyces cerevisiae is part of the gluconeogenic pathway and its expression is regulated by Cat8p
    • Bojunga N, Kotter P, Entian KD, (1998) The succinate/fumarate transporter Acr1p of Saccharomyces cerevisiae is part of the gluconeogenic pathway and its expression is regulated by Cat8p. Mol Gen Genet 260: 453-461.
    • (1998) Mol Gen Genet , vol.260 , pp. 453-461
    • Bojunga, N.1    Kotter, P.2    Entian, K.D.3
  • 23
    • 0033051151 scopus 로고    scopus 로고
    • Multiple regulatory elements control the expression of the yeast ACR1 gene
    • Redruello B, Valdes E, Luz Lopez M, Rodicio R, (1999) Multiple regulatory elements control the expression of the yeast ACR1 gene. FEBS Lett 445: 246-250.
    • (1999) FEBS Lett , vol.445 , pp. 246-250
    • Redruello, B.1    Valdes, E.2    Luz Lopez, M.3    Rodicio, R.4
  • 25
    • 77953128693 scopus 로고    scopus 로고
    • Use of genome-scale metabolic models for understanding microbial physiology
    • Liu LM, Agren R, Bordel S, Nielsen J, (2010) Use of genome-scale metabolic models for understanding microbial physiology. Febs Letters 584: 2556-2564.
    • (2010) Febs Letters , vol.584 , pp. 2556-2564
    • Liu, L.M.1    Agren, R.2    Bordel, S.3    Nielsen, J.4
  • 26
    • 73149122136 scopus 로고    scopus 로고
    • Applications of genome-scale metabolic reconstructions
    • Oberhardt MA, Palsson BO, Papin JA, (2009) Applications of genome-scale metabolic reconstructions. Mol Syst Biol 5: 320.
    • (2009) Mol Syst Biol , vol.5 , pp. 320
    • Oberhardt, M.A.1    Palsson, B.O.2    Papin, J.A.3
  • 27
    • 57549102595 scopus 로고    scopus 로고
    • Genome-scale models of bacterial metabolism: reconstruction and applications
    • Durot M, Bourguignon PY, Schachter V, (2009) Genome-scale models of bacterial metabolism: reconstruction and applications. FEMS Microbiol Rev 33: 164-190.
    • (2009) FEMS Microbiol Rev , vol.33 , pp. 164-190
    • Durot, M.1    Bourguignon, P.Y.2    Schachter, V.3
  • 28
    • 67449096729 scopus 로고    scopus 로고
    • Flux balance analysis of biological systems: applications and challenges
    • Raman K, Chandra N, (2009) Flux balance analysis of biological systems: applications and challenges. Brief Bioinform 10: 435-449.
    • (2009) Brief Bioinform , vol.10 , pp. 435-449
    • Raman, K.1    Chandra, N.2
  • 29
    • 84857054573 scopus 로고    scopus 로고
    • Fifteen years of large scale metabolic modeling of yeast: Developments and impacts
    • Osterlund T, Nookaew I, Nielsen J (2011) Fifteen years of large scale metabolic modeling of yeast: Developments and impacts. Biotechnol Adv.
    • (2011) Biotechnol Adv
    • Osterlund, T.1    Nookaew, I.2    Nielsen, J.3
  • 30
    • 0032952709 scopus 로고    scopus 로고
    • Effect of gene disruptions of the TCA cycle on production of succinic acid in Saccharomyces cerevisiae
    • Arikawa Y, Kuroyanagi T, Shimosaka M, Muratsubaki H, Enomoto K, et al. (1999) Effect of gene disruptions of the TCA cycle on production of succinic acid in Saccharomyces cerevisiae. J Biosci Bioeng 87: 28-36.
    • (1999) J Biosci Bioeng , vol.87 , pp. 28-36
    • Arikawa, Y.1    Kuroyanagi, T.2    Shimosaka, M.3    Muratsubaki, H.4    Enomoto, K.5
  • 31
    • 27744491124 scopus 로고    scopus 로고
    • Characterization of the metabolic shift between oxidative and fermentative growth in Saccharomyces cerevisiae by comparative 13C flux analysis
    • Frick O, Wittmann C, (2005) Characterization of the metabolic shift between oxidative and fermentative growth in Saccharomyces cerevisiae by comparative 13C flux analysis. Microbial Cell Factories 4: 30.
    • (2005) Microbial Cell Factories , vol.4 , pp. 30
    • Frick, O.1    Wittmann, C.2
  • 32
    • 0037088811 scopus 로고    scopus 로고
    • A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast
    • Gueldener U, Heinisch J, Koehler GJ, Voss D, Hegemann JH, (2002) A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res 30: e23.
    • (2002) Nucleic Acids Res , vol.30
    • Gueldener, U.1    Heinisch, J.2    Koehler, G.J.3    Voss, D.4    Hegemann, J.H.5
  • 34
    • 79551662521 scopus 로고    scopus 로고
    • Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0
    • Schellenberger J, Que R, Fleming RM, Thiele I, Orth JD, et al. (2011) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc 6: 1290-1307.
    • (2011) Nat Protoc , vol.6 , pp. 1290-1307
    • Schellenberger, J.1    Que, R.2    Fleming, R.M.3    Thiele, I.4    Orth, J.D.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.