메뉴 건너뛰기




Volumn 36, Issue 5, 2008, Pages 2344-2376

Limit theorems for weighted samples with applications to sequential Monte Carlo methods

Author keywords

Branching; Conditional central limit theorems; Particle filtering; Sequential importance sampling; Sequential Monte Carlo

Indexed keywords


EID: 49349102500     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: 10.1214/07-AOS514     Document Type: Article
Times cited : (126)

References (27)
  • 1
    • 0003665481 scopus 로고    scopus 로고
    • DOUCET, A, DE FREITAS, N. and GORDON, N, eds, Springer, New York
    • DOUCET, A., DE FREITAS, N. and GORDON, N., eds. (2001). Sequential Monte Carlo Methods in Practice. Springer, New York.
    • (2001) Sequential Monte Carlo Methods in Practice
  • 3
    • 0001387339 scopus 로고    scopus 로고
    • State space and hidden Markov models
    • O. E. Barndorff-Nielsen, D. R. Cox and C. Klueppelberg, eds, CRC Publisher, Boca Raton, FL
    • KÜNSCH, H. R. (2001). State space and hidden Markov models. In Complex Stochastic Systems (O. E. Barndorff-Nielsen, D. R. Cox and C. Klueppelberg, eds.) 109-173. CRC Publisher, Boca Raton, FL.
    • (2001) Complex Stochastic Systems , pp. 109-173
    • KÜNSCH, H.R.1
  • 4
    • 0035648076 scopus 로고    scopus 로고
    • Following a moving target - Monte Carlo inference for dynamic Bayesian models
    • GILKS, W. R. and BERZUINI, C. (2001). Following a moving target - Monte Carlo inference for dynamic Bayesian models. J. Roy. Statist. Soc. Ser. B 63 127-146.
    • (2001) J. Roy. Statist. Soc. Ser. B , vol.63 , pp. 127-146
    • GILKS, W.R.1    BERZUINI, C.2
  • 5
    • 30344486983 scopus 로고    scopus 로고
    • Recursive Monte Carlo filters: Algorithms and theoretical analysis
    • KÜNSCH, H. R. (2005). Recursive Monte Carlo filters: Algorithms and theoretical analysis. Ann. Statist. 33 1983-2021.
    • (2005) Ann. Statist , vol.33 , pp. 1983-2021
    • KÜNSCH, H.R.1
  • 7
    • 21644457738 scopus 로고    scopus 로고
    • Central limit theorem for sequential Monte Carlo methods and its application to bayesian inference
    • CHOPIN, N. (2004). Central limit theorem for sequential Monte Carlo methods and its application to bayesian inference. Ann. Statist. 32 2385-2411.
    • (2004) Ann. Statist , vol.32 , pp. 2385-2411
    • CHOPIN, N.1
  • 8
    • 84874286884 scopus 로고
    • Monte Carlo techniques to estimate the conditional expectation in multi-stage non-linear filtering
    • HANDSCHIN, J. and MAYNE, D. (1969). Monte Carlo techniques to estimate the conditional expectation in multi-stage non-linear filtering. Internat. J. Control 9 547-559.
    • (1969) Internat. J. Control , vol.9 , pp. 547-559
    • HANDSCHIN, J.1    MAYNE, D.2
  • 9
    • 84950788916 scopus 로고
    • A noniterative sampling/importance resampling alternative to the data augmentation algorithm for creating a few imputations when the fraction of missing information is modest: The SIR algorithm (discussion of Tanner and Wong)
    • RUBIN, D. B. (1987). A noniterative sampling/importance resampling alternative to the data augmentation algorithm for creating a few imputations when the fraction of missing information is modest: The SIR algorithm (discussion of Tanner and Wong). J. Amer. Statist. Assoc. 82 543-546.
    • (1987) J. Amer. Statist. Assoc , vol.82 , pp. 543-546
    • RUBIN, D.B.1
  • 11
    • 0032359151 scopus 로고    scopus 로고
    • Sequential Monte Carlo methods for dynamic systems
    • LIU, J. and CHEN, R. (1998). Sequential Monte Carlo methods for dynamic systems. J. Amer. Statist. Assoc. 93 1032-1044.
    • (1998) J. Amer. Statist. Assoc , vol.93 , pp. 1032-1044
    • LIU, J.1    CHEN, R.2
  • 14
    • 0001534675 scopus 로고    scopus 로고
    • Nonlinear filtering: Interacting particle solution
    • DEL MORAL, P. (1996). Nonlinear filtering: Interacting particle solution. Markov Process. Related Fields 2 555-579.
    • (1996) Markov Process. Related Fields , vol.2 , pp. 555-579
    • DEL MORAL, P.1
  • 15
    • 0033438365 scopus 로고    scopus 로고
    • Central limit theorem for nonlinear filtering and interacting particle systems
    • DEL MORAL, P. and GUIONNET, A. (1999). Central limit theorem for nonlinear filtering and interacting particle systems. Ann. Appl. Probab. 9 275-297.
    • (1999) Ann. Appl. Probab , vol.9 , pp. 275-297
    • DEL MORAL, P.1    GUIONNET, A.2
  • 16
    • 0002936641 scopus 로고    scopus 로고
    • Branching and interacting particle systems approximations of Feynman-Kac formulae with applications to nonlinear filtering
    • Séminaire de Probabilités XXXIV, Springer, Berlin
    • DEL MORAL, P. and MICLO, L. (2000). Branching and interacting particle systems approximations of Feynman-Kac formulae with applications to nonlinear filtering. Séminaire de Probabilités XXXIV. Lecture Notes in Math. 1729 1-145. Springer, Berlin.
    • (2000) Lecture Notes in Math , vol.1729 , pp. 1-145
    • DEL MORAL, P.1    MICLO, L.2
  • 17
    • 0031256242 scopus 로고    scopus 로고
    • Nonlinear filtering and measure-valued processes
    • CRISAN, D. and LYONS, T. (1997). Nonlinear filtering and measure-valued processes. Probab. Theory Related Fields 109 217-244.
    • (1997) Probab. Theory Related Fields , vol.109 , pp. 217-244
    • CRISAN, D.1    LYONS, T.2
  • 18
    • 0036504051 scopus 로고    scopus 로고
    • A survey of convergence results on particle filtering methods for practitioners
    • CRISAN, D. and DOUCET, A. (2002). A survey of convergence results on particle filtering methods for practitioners. IEEE Trans. Signal Process. 50 736-746.
    • (2002) IEEE Trans. Signal Process , vol.50 , pp. 736-746
    • CRISAN, D.1    DOUCET, A.2
  • 19
    • 2942624657 scopus 로고    scopus 로고
    • Resample-move filtering with cross-model jumps
    • A. Doucet, N. De Freitas and N. Gordon, eds, Springer, Berlin
    • BERZUINI, C. and GILKS, W. R. (2001). Resample-move filtering with cross-model jumps. In Sequential Monte Carlo Methods in Practice (A. Doucet, N. De Freitas and N. Gordon, eds.) 117-138. Springer, Berlin.
    • (2001) Sequential Monte Carlo Methods in Practice , pp. 117-138
    • BERZUINI, C.1    GILKS, W.R.2
  • 20
    • 1542427941 scopus 로고    scopus 로고
    • Filtering via simulation: Auxiliary particle filters
    • PITT, M. K. and SHEPHARD, N. (1999). Filtering via simulation: Auxiliary particle filters. J. Amer. Statist. Assoc. 94 590-599.
    • (1999) J. Amer. Statist. Assoc , vol.94 , pp. 590-599
    • PITT, M.K.1    SHEPHARD, N.2
  • 21
    • 84950943371 scopus 로고
    • Blind deconvolution via sequential imputations
    • LIU, J. and CHEN, R. (1995). Blind deconvolution via sequential imputations. J. Amer. Statist. Assoc. 90 567-576.
    • (1995) J. Amer. Statist. Assoc , vol.90 , pp. 567-576
    • LIU, J.1    CHEN, R.2
  • 22
    • 0032186558 scopus 로고    scopus 로고
    • Convergence of a branching particle method to the solution of the Zakai equation
    • electronic
    • CRISAN, D., GAINES, J. and LYONS, T. (1998). Convergence of a branching particle method to the solution of the Zakai equation. SIAM J. Appl. Math. 58 1568-1590 (electronic).
    • (1998) SIAM J. Appl. Math , vol.58 , pp. 1568-1590
    • CRISAN, D.1    GAINES, J.2    LYONS, T.3
  • 23
    • 0038336146 scopus 로고    scopus 로고
    • Exact rates of convergence for a branching particle approximation to the solution of the Zakai equation
    • CRISAN, D. (2003). Exact rates of convergence for a branching particle approximation to the solution of the Zakai equation. Ann. Probab. 31 693-718.
    • (2003) Ann. Probab , vol.31 , pp. 693-718
    • CRISAN, D.1
  • 24
    • 0000978881 scopus 로고    scopus 로고
    • A theoretical framework for sequential importance sampling and resampling
    • A. Doucet, N. De Freitas and N. Gordon, eds, Springer, Berlin
    • LIU, J., CHEN, R. and LOGVINENKO, T. (2001). A theoretical framework for sequential importance sampling and resampling. In Sequential Monte Carlo Methods in Practice (A. Doucet, N. De Freitas and N. Gordon, eds.) 225-246. Springer, Berlin.
    • (2001) Sequential Monte Carlo Methods in Practice , pp. 225-246
    • LIU, J.1    CHEN, R.2    LOGVINENKO, T.3
  • 25
    • 84950943564 scopus 로고
    • Sequential imputation and Bayesian missing data problems
    • KONG, A., LIU, J. S. and WONG, W. (1994). Sequential imputation and Bayesian missing data problems. J. Amer. Statist. Assoc. 89 278-288, 590-599.
    • (1994) J. Amer. Statist. Assoc , vol.89 , Issue.278-288 , pp. 590-599
    • KONG, A.1    LIU, J.S.2    WONG, W.3
  • 26
    • 0004225404 scopus 로고    scopus 로고
    • 2nd ed. Springer, New York
    • SHIRYAEV, A. N. (1996). Probability, 2nd ed. Springer, New York.
    • (1996) Probability
    • SHIRYAEV, A.N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.